+0  
 
0
64
4
avatar+703 

for A i subbed in the values and expanded the brackets which gave me 

15^n+1 - 8^n-1 - (120^n -8^n-1)

205^n then i divided that by 7 which gave me 7*15^n   7=k

B is what im confused about 

so try for n =2

15^2 - 8^2-2 = 224  divisible 7 =32

assume true for n =k 

15^k - 8^k-2 

try for n=k+1

15^k+1 - 8^k-1

then i did 15*15^k - 8^k/8 (im not sure whether i can do this)

225^k - 1^k =224^k 

224^k / 7 = 15^k

= 15^k * 7

but i dont think this is what im supposed to do please help thanks

 Jan 10, 2019
edited by YEEEEEET  Jan 10, 2019
edited by YEEEEEET  Jan 10, 2019
 #1
avatar+96177 
+2

b)    Show that this is true for n = 2

 

15^2 - 8^(2 - 2)   =  225  - 1  =  224   = 32(7)

 

Assume it is true for n =  k.....that is

 

15^k - 8^(k - 2)    is a multiple of 7

 

Prove it is true for  k + 1

 

15^(k + 1)  - 8^(k + 1 - 2)

 

15^(k + 1) - 8^( k - 1)    note YEEEEEET  that we can write this as

 

(14 + 1)^(k + 1) - (7 + 1)^(k - 1)          use the binomial theorem and expand

 

[14^(k + 1) + C(k + 1, 1)*14^k  + ... + 14 + 14^0* 1^(k + 1) ] -

[ 7^(k - 1 )  + C(k - 1, 1) * 7^(k - 2) + ....+7 + 7^0*1^ (k - 1) ]   

 

The  terms   14^0*1^(k +1)   and  7^0*1^(k - 1)    just equal 1  and will "cancel" with the subtraction of the second expansion from the first

 

So...we have this simplification.... 

 

[ 14^(k + 1) + C(k + 1, 1)* 14^k  +...+ 14  - 7^(k - 1) - C(k - 1, 1)*7^(k - 2 ) -...- 7 ]  =

 

[ (7 *2)^(k + 1) + C( k + 1,1)* (7*2)^k + ....+ 14 - 7^( k - 1) - C(k - 1, 1)*7^(k - 2) -....- 7 ]

 

Every term in the expansion simplification will be divisible by 7, hence the result is a multiple of 7

 

 

cool cool cool

 Jan 10, 2019
 #2
avatar+703 
+1

oh wow i didnt know you can do binomial expansion with algebraic power

thank you

YEEEEEET  Jan 10, 2019
edited by YEEEEEET  Jan 10, 2019
 #2
avatar+703 
0

oh wow i didnt know you can do binomial expansion with algebraic number

thank you

YEEEEEET  Jan 10, 2019
 #4
avatar+27476 
+3

Here's an alternative approach:

 

 Jan 10, 2019
edited by Alan  Jan 10, 2019
edited by Alan  Jan 10, 2019

30 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.