+0  
 
0
140
1
avatar

\(\sqrt{(a+b)}=\sqrt{a}+\sqrt{b} \)  Prove if these equations are true, show your working out 

 

2. \(\sqrt{(a-b)}=\sqrt{a}-\sqrt{b}\)  

Guest Nov 6, 2017
 #1
avatar+86889 
+2

√ [ a + b ]  =  √a + √b        square both sides

 

 [√ [ a + b ] ]^2    =  [ √a + √b ]^2

 

a +  b  =    [ √a + √b ]  [ √a + √b ]

 

a + b  =   [√a ]^2   +  2 √a√b  + [√b ]^2

 

a + b  =   a   + 2 √a√b  +  b 

 

If we subtract    a, b from both sides, we have that

 

0  =    2 √a√b

 

This is not true unless a or b  [or both ]  = 0 ....so.....the original equation, in general,  isn't true, either 

 

 

Using similar procedures, the second one will be

 

a  - b  =    a   - 2 √a√b  +  b        subtract a, b from both sides

 

-2b =  -  2√a√b        divide both sides by -2

 

b  =  √a√b     and this is only true if   a = b   and   a,b  ≥ 0

 

So....the second one isn't true, in general, either

 

 

cool cool cool

CPhill  Nov 6, 2017
edited by CPhill  Nov 7, 2017

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.