+0

# Proof

0
92
1

$$\sqrt{(a+b)}=\sqrt{a}+\sqrt{b}$$  Prove if these equations are true, show your working out

2. $$\sqrt{(a-b)}=\sqrt{a}-\sqrt{b}$$

Guest Nov 6, 2017
Sort:

#1
+82634
+2

√ [ a + b ]  =  √a + √b        square both sides

[√ [ a + b ] ]^2    =  [ √a + √b ]^2

a +  b  =    [ √a + √b ]  [ √a + √b ]

a + b  =   [√a ]^2   +  2 √a√b  + [√b ]^2

a + b  =   a   + 2 √a√b  +  b

If we subtract    a, b from both sides, we have that

0  =    2 √a√b

This is not true unless a or b  [or both ]  = 0 ....so.....the original equation, in general,  isn't true, either

Using similar procedures, the second one will be

a  - b  =    a   - 2 √a√b  +  b        subtract a, b from both sides

-2b =  -  2√a√b        divide both sides by -2

b  =  √a√b     and this is only true if   a = b   and   a,b  ≥ 0

So....the second one isn't true, in general, either

CPhill  Nov 6, 2017
edited by CPhill  Nov 7, 2017

### 9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details