+0  
 
0
4321
1
avatar

Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers

 Jun 3, 2015

Best Answer 

 #1
avatar+33652 
+5

In general (m2 - n2) = (m + n)(m - n) so if m = n+1 we have 

 

(m2 - n2) = ((n+1)2 - n2) = (n+1 + n)(n+1 - n) = (m + n)*1  = m + n

.

 Jun 3, 2015
 #1
avatar+33652 
+5
Best Answer

In general (m2 - n2) = (m + n)(m - n) so if m = n+1 we have 

 

(m2 - n2) = ((n+1)2 - n2) = (n+1 + n)(n+1 - n) = (m + n)*1  = m + n

.

Alan Jun 3, 2015

2 Online Users

avatar