+0  
 
+1
71
1
avatar+270 

Prove algebraically that the straight line with equation x=2y+5 is a tangent to the circle with equation x²+y²=5.

 

smileysmileysmiley

qualitystreet  Apr 11, 2018
Sort: 

1+0 Answers

 #1
avatar+85757 
+1

x  = 2y + 5    (1)

x^2 + y^2  = 5  (2)

 

Sub (1) into (2) to find the y intersection of these functions

 

(2y + 5)^2  + y^2  =  5      simplify

4y^2 + 20 y + 25 + y^2  = 5

5y^2 + 20y +20  = 0      divide through by 5

y^2 + 4y + 4  =  0      factor

(y + 2)^2  = 0        take the square root of both sides

y + 2   = 0

y  = -2

And x  =    2(-2) + 5   =  1

 

So....(1, -2)  is the tangent point  because it  is the only point that makes both equations true

1 = 2(-2) + 5   is true      and

(1)^2  + (-2)^2  = 5     is also true

 

Here's a graph :  https://www.desmos.com/calculator/ty1aww3bmp

 

 

cool cool cool

CPhill  Apr 11, 2018
edited by CPhill  Apr 11, 2018

11 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details