Prove that tan(a)/(1-cot(a))+cot(a)/(1-tan(a))= sec(A)*csc(A)+1
tan(a)(1−cot(a))+cot(a)(1−tan(a))=sec(A)∗csc(A)+1LHS=sinacosa(1−cosasina)+cosasina(1−sinacosa)LHS=sinacosa(sina−cosasina)+cosasina(cosa−sinacosa)LHS=sinacosa÷(sina−cosasina)+cosasina÷(cosa−sinacosa)LHS=sinacosa×(sinasina−cosa)+cosasina×(cosacosa−sina)LHS=sin2acosa(sina−cosa)+cos2asina(cosa−sina)LHS=sin2acosa(sina−cosa)−cos2asina(sina−cosa)LHS=sin3acosa∗sina(sina−cosa)−cos3acosa∗sina(sina−cosa)
LHS=sin3a−cos3acosa∗sina(sina−cosa)LHS=(sina−cosa)(sin2a+sinacosa+cos2a)cosa∗sina(sina−cosa)LHS=(sinacosa+cos2a+sin2a)cosa∗sinaLHS=(sinacosa+1)cosa∗sinaLHS=1+1cosa∗sinaLHS=sec(a)∗cosec(a)+1LHS=RHSQED
Prove that tan(a)/(1-cot(a))+cot(a)/(1-tan(a))= sec(A)*csc(A)+1
tan(a)(1−cot(a))+cot(a)(1−tan(a))=sec(A)∗csc(A)+1LHS=sinacosa(1−cosasina)+cosasina(1−sinacosa)LHS=sinacosa(sina−cosasina)+cosasina(cosa−sinacosa)LHS=sinacosa÷(sina−cosasina)+cosasina÷(cosa−sinacosa)LHS=sinacosa×(sinasina−cosa)+cosasina×(cosacosa−sina)LHS=sin2acosa(sina−cosa)+cos2asina(cosa−sina)LHS=sin2acosa(sina−cosa)−cos2asina(sina−cosa)LHS=sin3acosa∗sina(sina−cosa)−cos3acosa∗sina(sina−cosa)
LHS=sin3a−cos3acosa∗sina(sina−cosa)LHS=(sina−cosa)(sin2a+sinacosa+cos2a)cosa∗sina(sina−cosa)LHS=(sinacosa+cos2a+sin2a)cosa∗sinaLHS=(sinacosa+1)cosa∗sinaLHS=1+1cosa∗sinaLHS=sec(a)∗cosec(a)+1LHS=RHSQED
Thanks Chris,
I am waiting for Heureka or Alan to come along and do it in 3 or 4 lines LOL
Another Solution
Prove \\\\ \frac{\tan \left(a\right)}{1-\cot \left(a\right)}+\frac{\cot \left(a\right)}{1-\tan \left(a\right)}=\sec \left(a\right)\csc \left(a\right)+1 \\$ \\ LHS \\\\ \hspace*{0.7cm}\ $=\frac{-\tan ^2\left(a\right)+\tan \left(a\right)-\cot ^2\left(a\right)+\cot \left(a\right)}{\left(\tan \left(a\right)-1\right)\left(\cot \left(a\right)-1\right)}$ \\ $=\frac{-\left(\frac{\cos \left(a\right)}{\sin \left(a\right)}\right)^2-\left(\frac{\sin \left(a\right)}{\cos \left(a\right)}\right)^2+\frac{\cos \left(a\right)}{\sin \left(a\right)}+\frac{\sin \left(a\right)}{\cos \left(a\right)}}{\left(-1+\frac{\cos \left(a\right)}{\sin \left(a\right)}\right)\left(-1+\frac{\sin \left(a\right)}{\cos \left(a\right)}\right)} \\\\ $=\frac{\cos ^2\left(a\right)+\sin ^2\left(a\right)+\cos \left(a\right)\sin \left(a\right)}{\cos \left(a\right)\sin \left(a\right)}\\\ \hspace*{3.0cm}$\mathrm{Using \; identity}: \cos ^2\left(x\right)+\sin ^2\left(x\right)=1 \\$ $=\frac{1+\cos \left(a\right)\sin \left(a\right)}{\sin \left(a\right)\cos \left(a\right)}$ \\\\
RHSsec(a)csc(a)+1$ TransformusingSinandCos$=1+1cos(a)1sin(a) Simplify$=1+cos(a)sin(a)cos(a)sin(a)
Snarky Comments pending . . ..