+0  
 
0
1057
5
avatar+4622 

Prove the inequality:

\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^{2}}\right)\ldots\left(1+\frac{1}{2^{n}}\right)<3.\)

 Oct 17, 2017

Best Answer 

 #4
avatar+33661 
+2

How about:

 

.

 Oct 19, 2017
 #1
avatar
0

Cannot prove it formally, but the LHS converges to 2.38423........., which is < 3

 Oct 18, 2017
 #2
avatar+118687 
0

Can you prove that the LHS converges to 2.38423 ?

Melody  Oct 19, 2017
 #3
avatar
0

As I said "Cannot prove it formally", but it does converge to 2.38423..........

https://www.wolframalpha.com/input/?i=%E2%88%8F+%5B(1%2B2%5E-n),+n,+1,+1000%5D

∏ [(1+2^-n), n, 1, 1000] ≈2.384231029031371724149899288678397238772...............etc.

 Oct 19, 2017
 #4
avatar+33661 
+2
Best Answer

How about:

 

.

Alan Oct 19, 2017
 #5
avatar
0

Thank you Alan.

 Oct 19, 2017

0 Online Users