Prove this identity.
\(\frac{1+sin\theta}{1-sin\theta}=\frac{csc\theta+1}{csc\theta-1}\)
I'll use x instead of "theta" [ easier to type.....LOL!!! ]
csc x + 1
_______ =
csc x - 1
1/sin x + 1
_________ =
1/sinx - 1
(1 + sin x ) / sinx
______________ =
(1 - sin x) / sin x
(1 + sin x) sin x
________ * ________ =
sin x 1 - sin x
1 + sin x
________ = the left hand side
1 - sin x
Prove this identity.
\(\large \dfrac{1+\sin(\theta)}{1-\sin(\theta)}=\dfrac{\csc(\theta)+1}{\csc(\theta)-1}\)
\(\begin{array}{|rcll|} \hline && \dfrac{1+\sin(\theta)}{1-\sin(\theta)} \\\\ &=& \dfrac{1+\sin(\theta)}{1-\sin(\theta)}\cdot \dfrac{ \dfrac{1}{\sin(\theta)} } {\dfrac{1}{\sin(\theta)}} \\\\ &=& \dfrac{ \Big(1+\sin(\theta)\Big) \dfrac{1}{\sin(\theta)} } {\Big(1-\sin(\theta) \Big)\dfrac{1}{\sin(\theta)}} \\\\ &=& \dfrac{ \dfrac{1}{\sin(\theta)} + \dfrac{\sin(\theta)} {\sin(\theta)} } { \dfrac{1}{\sin(\theta)} - \dfrac{\sin(\theta)}{\sin(\theta)} } \\\\ &=& \dfrac{ \dfrac{1}{\sin(\theta)} + 1 } { \dfrac{1}{\sin(\theta)} - 1 } \quad | \quad \boxed{\dfrac{1}{\sin(\theta)} = \csc(\theta) } \\\\ &=& \dfrac{ \csc(\theta) + 1 } { \csc(\theta) - 1 } \\ \hline \end{array}\)