+0  
 
0
580
0
avatar+448 

Planck's constant has a numerical value of 6.62607004Γ—10^βˆ’34 and is denoted by β„. Let π‘“ be the function defined by

𝑓(π‘₯)={0 if π‘₯<0

𝑓(π‘₯)={ℏ if π‘₯β‰₯0

 

Prove that limπ‘₯β†’0𝑓(π‘₯)=0 is false; in other words, the epsolon delta definition is not satisfied. 

 
 Sep 24, 2020

1 Online Users