+0  
 
+3
279
12
avatar

Can anyone prove that i^i is a real number using only advanced algebra and trig? I will post my solution in 24 hours if no one finds it- note that there may be multiple proofs. Good Luck!

math complex-numbers
Guest Aug 22, 2014

Best Answer 

 #5
avatar+91053 
+18

$$\\e^{ix}=cosx+isinx\\\\
e^{i\frac{\pi}{2}}=cos\frac{\pi}{2}+isin\frac{\pi}{2}\\\\
e^{i\frac{\pi}{2}}=0+i\times 1\\\\
e^{i\frac{\pi}{2}}=i\\\\
\mbox{raise each side to the power of i}\\\\
\left(e^{i\frac{\pi}{2}}\right)^i=i^i\\\\
e^{i^2\frac{\pi}{2}}=i^i\\\\
e^{(-1)\frac{\pi}{2}}=i^i\\\\
e^{\frac{-\pi}{2}}=i^i\\\\
therefore\\
i^i=e^{\frac{-\pi}{2}} \\\\therefore\\
i^i \mbox{ is a real number }$$

Melody  Aug 23, 2014
Sort: 

12+0 Answers

 #1
avatar
+8

Just an update: to clarify the above, this means NO CALCULUS!!

 Once again, good luck!

Guest Aug 22, 2014
 #2
avatar
+8

Other update:

a.$${\sqrt{-{\mathtt{1}}}} = {i}$$, and also, $${i}{\mathtt{\,\times\,}}{i} = -{\mathtt{1}}$$

b. by i^i I mean $${{i}}^{{i}}$$

 

We're now at the one-hour mark. Good luck!

Guest Aug 22, 2014
 #3
avatar
0

We're now at 4 hours and no one has solved it yet! Here's a hint- use logs.

Good Luck!

Guest Aug 23, 2014
 #4
avatar+4471 
+10

The following video lists the claim and proves it beautifully (literally!): https://www.youtube.com/watch?v=PxViWDgAZ7Q

AzizHusain  Aug 23, 2014
 #5
avatar+91053 
+18
Best Answer

$$\\e^{ix}=cosx+isinx\\\\
e^{i\frac{\pi}{2}}=cos\frac{\pi}{2}+isin\frac{\pi}{2}\\\\
e^{i\frac{\pi}{2}}=0+i\times 1\\\\
e^{i\frac{\pi}{2}}=i\\\\
\mbox{raise each side to the power of i}\\\\
\left(e^{i\frac{\pi}{2}}\right)^i=i^i\\\\
e^{i^2\frac{\pi}{2}}=i^i\\\\
e^{(-1)\frac{\pi}{2}}=i^i\\\\
e^{\frac{-\pi}{2}}=i^i\\\\
therefore\\
i^i=e^{\frac{-\pi}{2}} \\\\therefore\\
i^i \mbox{ is a real number }$$

Melody  Aug 23, 2014
 #6
avatar+91053 
+6

Mmm I just noticed that I did not use any logs 

Melody  Aug 23, 2014
 #7
avatar
0

Great job Melody my proof is probably a bit less elegant and is also longer. You got the right answer though.

Guest Aug 23, 2014
 #8
avatar
+5

OK! Here is my proof!

Lemma: $${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = -{\mathtt{1}}$$

Statement                                          Reason

1.$${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = {\mathtt{x}}$$                                   Given

2.$${{\mathtt{e}}}^{\left({\mathtt{k}}{\mathtt{\,\times\,}}{i}\right)} = \underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{k}}\right)}{\mathtt{\,\small\textbf+\,}}{i}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{k}}\right)}$$              Euler's Identity

3.$${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = \underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{\pi}}\right)}{\mathtt{\,\small\textbf+\,}}{i}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{\pi}}\right)}$$            From 1. and 2.

4.$${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = {\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{i}{\mathtt{\,\times\,}}{\mathtt{0}}$$                 Simplify

5.$${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = -{\mathtt{1}}$$                                Simplify

Q.E.D.

Main Proof:

Statement                                                   Reason

1.$${{i}}^{{i}} = {\mathtt{x}}$$                                                    Given

2. $${ln}{\left({{i}}^{{i}}\right)} = {ln}{\left({\mathtt{x}}\right)}$$                                    Take log of both sides

3.$${i}{\mathtt{\,\times\,}}{ln}{\left({i}\right)} = {ln}{\left({\mathtt{x}}\right)}$$                                 Power rule of logarithms

4. $${i} = {\sqrt{-{\mathtt{1}}}}$$                                             Given

5.$${i} = {\left(-{\mathtt{1}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}$$                                         Algebra

6.$${i}{\mathtt{\,\times\,}}{ln}{\left({\left(-{\mathtt{1}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}\right)} = {ln}{\left({\mathtt{x}}\right)}$$                      From 5. and 3.

7. $${i}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}{ln}{\left(-{\mathtt{1}}\right)} = {ln}{\left({\mathtt{x}}\right)}$$                Power rule of logarithms

8. $${ln}{\left({\mathtt{x}}\right)} = {\mathtt{y}}$$ if and only if $${{\mathtt{e}}}^{{\mathtt{y}}} = {\mathtt{x}}$$              Definition of ln

9.$${i}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right) = {ln}{\left({\mathtt{x}}\right)}$$                 Use the lemma

10. $$\left({\frac{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\times\,}}{i}\right)}{{\mathtt{2}}}}\right) = {ln}{\left({\mathtt{x}}\right)}$$                            Algebra

11. $$\left({\frac{\left(\left(-{\mathtt{1}}\right){\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{{\mathtt{2}}}}\right) = {ln}{\left({\mathtt{x}}\right)}$$                           Algebra

12. $$\left({\frac{-{\mathtt{\pi}}}{{\mathtt{2}}}}\right) = {ln}{\left({\mathtt{x}}\right)}$$                                      Algebra

13. $${{\mathtt{e}}}^{\left({\frac{-{\mathtt{\pi}}}{{\mathtt{2}}}}\right)} = {\mathtt{x}}$$                                          Take antilog of both sides and use step 8.

14.$${\frac{{\mathtt{1}}}{\left({{\mathtt{e}}}^{\left({\frac{{\mathtt{\pi}}}{{\mathtt{2}}}}\right)}\right)}} = {\mathtt{x}}$$                                          Algebra

15. $${\frac{{\mathtt{1}}}{\left({{\sqrt{{\mathtt{e}}}}}^{\,{\mathtt{\pi}}}\right)}} = {\mathtt{x}}$$                                            Algebra

16. $$\left({\frac{{\mathtt{1}}}{\left({{\sqrt{{\mathtt{e}}}}}^{\,{\mathtt{\pi}}}\right)}}\right){\mathtt{\,\times\,}}\left({\frac{{{\sqrt{{\mathtt{e}}}}}^{\,\left({\mathtt{4}}-{\mathtt{\pi}}\right)}}{{{\sqrt{{\mathtt{e}}}}}^{\,\left({\mathtt{4}}-{\mathtt{\pi}}\right)}}}\right) = {\mathtt{x}}$$              Rationalize the denominator

17. $${\frac{\left({{\sqrt{{\mathtt{e}}}}}^{\,\left({\mathtt{4}}-{\mathtt{\pi}}\right)}\right)}{\left({{\sqrt{{\mathtt{e}}}}}^{\,{\mathtt{4}}}\right)}}$$                                             Algebra

18. $${\frac{{{\sqrt{{\mathtt{e}}}}}^{\,\left({\mathtt{4}}-{\mathtt{\pi}}\right)}}{{{\mathtt{e}}}^{{\mathtt{2}}}}} = {\mathtt{0.207\: \!879\: \!576\: \!350\: \!761\: \!9}}$$   Algebra

And this is a real number.

Q.E.D.

Thanks to you all for submitting your proofs and also, please respond to tell me of any flaws in my proof. I will try to get back to WebCalc 2.0 with another puzzle proof question soon!

Guest Aug 24, 2014
 #9
avatar+91053 
+5

 

hi anonymous,

Why don't you join up.  It is very easy to do.  Much easier than posting anonymously every time.  

I liked you proof.  I just wrote it in LaTex as I worked through it.  

 

$$\begin{array}{rll}
e^{\pi i}&=&cos\pi+isin\pi\\
e^{\pi i}&=&-1+0\\
e^{\pi i}&=&-1\qquad \\
ln(e^{\pi i})&=&ln(-1)\qquad \\
ln(-1)&=&\pi i\qquad \\
now&&\\
x&=&i^i\\
lnx&=&lni^i\\
lnx&=&ilni\\
lnx&=&iln(-1)^{1/2}\\
lnx&=&\frac{i}{2}ln(-1)\\
lnx&=&\frac{i}{2}\times \pi i\\
lnx&=&\frac{\pi\times i^2}{2}\\
lnx&=&\frac{\pi\times -1}{2}\\
lnx&=&\frac{-\pi}{2}\\
e^{lnx}&=&e^{\frac{-\pi}{2}}\\
x&=&e^{\frac{-\pi}{2}}\\
x&\in&Z\\
therefore&&\\
i^i&\in&Z\\


\end{array}$$

Melody  Aug 24, 2014
 #10
avatar+78755 
0

Very impressive, guys....!!!!

 

CPhill  Aug 24, 2014
 #11
avatar
0

Melody

yes but I am just a 12 yr old and so my parents won't allow me to sign up.

the proof was written by me, a 12 year old.

Guest Aug 25, 2014
 #12
avatar+6881 
0

Good job anonymous 12-year-old. Me, a 13-year-old, couldn't have thought of that complex proof :O

MaxWong  Aug 17, 2016

2 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details