+0  
 
0
33
1
avatar

A right square pyramid with base edges of length 8*sqrt(2) units each and slant edges of length 10 units each is cut by a plane that is parallel to its base and 4 units above its base. What is the volume, in cubic units, of the new pyramid that is cut off by this plane?

 

 Apr 20, 2021
 #1
avatar+118505 
+1

We  can find  the  height   of  the larger pyramid  as  follows

 

The  diagonal  distance  across  the bottom of the base   =  8sqrt (2) *sqrt (2) =  16

 

The  height of  the  larger pyramid  =  sqrt  [ 10^2 -  (16/2)^2)  = sqrt [ 100  - 8^2] = sqrt [ 100 - 64] = sqrt (36)  = 6

 

The volume of this larger pyramid =  (1/3)  base area * height=  (1/3) (8sqrt 2)^2 * 6  =

 

(1/3)  (128) * 6    =      256  units^3

 

If the  base  of  the  smaller pyramid is  4 units  above the base of the larger.....then its height = 6 - 4  =  2

 

So  since these pyramids  are similar,  the scale factor of  the  smaller pyramid to  the  larger = 2/6 = 1/3

 

So.....the  volume of the  smaller pyramid =  Volume  of larger pyramid * (scale factor)^3  =

 

256  ( 1/3)^3  =  

 

256  / 27  units^3    ≈   9.48 units^3 

 

cool cool cool

 Apr 20, 2021

25 Online Users