+0

# Pythagoras proof

0
205
1

For Pythagoras' theorem, a^2+b^2=c^2, prove that a+b>c

Guest Jun 2, 2017
Sort:

#1
+85565
+2

Let us first assume that  a + b  = c

Then

a^2   +  b^2  =  c^2

a^2  + b^2   =  ( a + b)^2

a^2  + b^2  =  a^2 + 2ab + b^2

0  =  2ab      which is impossible  since  a , b   are positive

Next, assume that  a +  b  < c

Then.....there must be some positive n  such that  a + b  + n  =  c

So

a^2 + b^2  = c^2

a^2 + b^2   = (a + b + n)^2

a^2  + b^2  = a^2 + 2ab + 2an + b^2 + 2bn + n^2

0  =  2ab + 2an + 2bn + n^2      which is also impossible since a,b and n are positive

So....

a + b  = c   is false

a + b < c  is false

And the only thing left is that   a + b > c

CPhill  Jun 2, 2017
edited by CPhill  Jun 2, 2017

### 27 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details