+0  
 
0
44
7
avatar

1.Let r and s be the roots of x^2-6x+2=0 Find (r-s)^2

 

2.Find all solutions to the equation x^2+29=10x.

 

3.For what values of j does the equation (2x+7)(x-5)=-43+jx have exactly one real solution?

 

4.What is the largest positive integer value of m such that the equation: 3x^2-mx+7=0
has no real solutions?

 

5.The roots of 3x^2-4x+15=0 are the same as the roots of x^2+bx+c=0 for some constants b and c Find the ordered pair (b,c)

 

6.The quadratic equation 2x^2+bx+18=0 has a double root. Find all possible values of b.

 

7. Find all values of c such that                       c           4
                                                                      ------ =  -------

                                                                       c-5       c-4

 Jan 31, 2019
edited by Guest  Jan 31, 2019
 #1
avatar+96080 
+1

Here's a few

 

1.Let r and s be the roots of x^2-6x+2=0 Find (r-s)^2

(r - s)^2 = r^2 - 2rs + s^2   =  r^2 + s^2 - 2rs      (1)

The sum of the roots  =   6/1 = 6

So (r+ s)^2 = r^2 + 2rs + s^2 = 36     (2)

The product of the roots = 2   = rs

So 2rs = 4

 

Therefore....using (2)

r^2 + 4 + s^2 = 36

r^2 + s^2 = 32

 

Therefore...plugging all of this into (1)....we have that

(r - s)^2  =  r^2 + s^2 - 2rs =    32 - 4   =  28

 

 

cool cool cool

 Jan 31, 2019
 #2
avatar+96080 
+1

2.Find all solutions to the equation x^2+29=10x.

 

x^2 - 10x + 29 = 0      complete the square on x

 

x^2 - 10x + 25  =  -29+ 25

 

(x -  5)^2 = -4         take both roots

 

x - 5 =  ±√-4

 

x - 5 = ±2i 

 

x = 5 ± 2i

 

 

cool cool cool

 Jan 31, 2019
 #3
avatar+96080 
+1

3.For what values of j does the equation (2x+7)(x-5)=-43+jx have exactly one real solution?

 

2x^2 - 3x - 35  =  -43 + jx      rearrange

 

2x^2 - (3 + j)x + 8 = 0

 

This will have one solution when the disriminant = 0  .......so....

 

(3 + j)^2 - 4(2)(8)  = 0

 

(3 + j)^2 - 64 = 0    

 

(3 + j)^2 = 64    take both roots

 

3 + j = ±8

 

3 + j = 8            or           3 + j = -8

j = 5                                   j = -11

 

 

cool cool cool

 Jan 31, 2019
 #4
avatar+96080 
+1

4.What is the largest positive integer value of m such that the equation: 3x^2-mx+7=0
has no real solutions?

 

Thiw will occur when the discriminant is < 0      .....so....

 

m^2 - 4(3)(7)   < 0

 

m^2 - 84 < 0

 

m^2 <  84

 

m < sqrt (84)

 

So 

 

m = 9

 

 

cool cool cool

 Jan 31, 2019
 #5
avatar+96080 
+1

7.

 

 c                  4

____   =   ______              cross-multiply

c - 5          c - 4

 

 

c (c - 4)  = 4(c - 5)

 

c^2 - 4c  = 4c - 20

 

c^2 - 8c + 20  = 0         complete the square on x

 

c^2 - 8c + 16  =  - 20 + 16

 

(c - 4)^2 =  -4        take both roots

 

c - 4   =  ±√-4

 

c - 4 = ±2i

 

c = 4 ±2i

 

 

cool cool cool

 Jan 31, 2019
 #6
avatar+7220 
+1

5. 

\(3x^2 - 4x + 15 = 0\\ x^2 - \dfrac{4}{3} x + 5 =0\\ \therefore (b,c) = \left(\dfrac{-4}{3},5\right)\)

.
 Feb 1, 2019
 #7
avatar+7220 
+1

6.

By considering the discriminant of the equation,

\(\Delta = b^2 - 4(2)(18) = b^2 - 108\).

we know that b2 - 108 must be 0 because the equation has a double root.

\(b^2 - 108 = 0\\ b = \pm \sqrt{108}\\ b= \pm6\sqrt 3\)

.
 Feb 1, 2019

36 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.