What real value of produces the smallest value of the quadratic t^2 - 9t - 36 + 3t^2 - t + 10?
What real value of t produces the smallest value of the quadratic t^2 - 9t - 36 + 3t^2 - t + 10?
Hello Guest!
\(f(t)==4t^2-10t-26\\ \frac{df(t)}{dt}=8t-10=0\\ \color{blue}t=\dfrac{10}{8}=1.25\)
The value t = 1.25 produces the smallest value of the quadratic t^2 - 9t - 36 + 3t^2 - t + 10.
The smallest value is - 32.25.
!