+0  
 
0
447
2
avatar+272 

 Find all values of p such that 2(x+4)(x-2p) has a minimum value of -18 over all real values of x. (In other words, we cannot have x be nonreal.)

WhichWitchIsWhich  Oct 24, 2017
 #1
avatar+90053 
+1

2(x+4)(x-2p) .....expanding, we have

 

2 [ x^2 + (4-2p)x -8p] 

 

2x^2 + (8-4p)x - 16p

 

And the minimum will occur where the derivative is 0

 

Take the derivative of the function and set to 0

 

4x + 8 - 4p  = 0

 

x + 2 - p  = 0

 

x = p - 2

 

So.......subbing this back into the function, we have

 

2 ( p - 2 + 4)(p - 2 - 2p)  =  -18

 

-2 ( p + 2) (p + 2)  = -18

 

(p + 2)^2  =  9     

 

p + 2  = 3              or    p + 2  = -3

 

p = 1                            p = -5

 

Here's the graph to prove this : 

 

https://www.desmos.com/calculator/6dn053wdo2

 

 

cool cool cool

CPhill  Oct 24, 2017
 #2
avatar+272 
+1

Thanks so much

WhichWitchIsWhich  Oct 24, 2017

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.