+0  
 
0
111
1
avatar

For what values of j does the equation (2x + 7)(x + 43) = -5 + jx have exactly one real solution? Express your answer as a list of numbers, separated by commas.

 Jan 31, 2021
 #1
avatar+11630 
+1

For what values of j does the equation (2x + 7)(x + 43) = -5 + jx have exactly one real solution? Express your answer as a list of numbers, separated by commas.

 

Hello Guest!

 

\((2x + 7)(x + 43) = -5 + jx\\ 2x^2+86x+7x+301+5-jx=0\\ 2x^2+(93-j)x+306=0\)

\(x = \large {93+j \pm \sqrt{ (93+j)^2-4\cdot 2\cdot 306} \over 2\cdot 306}\)

\( (93+j)^2-4\cdot 2\cdot 306\geq 0\\ 8649+186j+j^2-2448\geq 0\\ j^2+186j+6101\geq 0\)

\(j=-93\pm \sqrt{8649-6101}\\ j=-93\pm 50.478\)

\(j\in \{-42.522,-149.477\}\)

 

If the value of \(j\in \{-42.522,-149.477\}\),

the equation (2x + 7) (x + 43) = -5 + jx has exactly one real solution.

 

If the value of

\(j\in \mathbb R\ |-149.477\leq j\leq -42.522\),

the equation (2x + 7) (x + 43) = -5 + jx has  two real solutions each.

laugh  !

 Jan 31, 2021
edited by asinus  Jan 31, 2021
edited by asinus  Jan 31, 2021
edited by asinus  Jan 31, 2021
edited by asinus  Jan 31, 2021

20 Online Users