+0  
 
0
51
1
avatar

For what values of j does the equation (2x + 7)(x + 43) = -5 + jx have exactly one real solution? Express your answer as a list of numbers, separated by commas.

 Jan 31, 2021
 #1
avatar+11086 
+1

For what values of j does the equation (2x + 7)(x + 43) = -5 + jx have exactly one real solution? Express your answer as a list of numbers, separated by commas.

 

Hello Guest!

 

\((2x + 7)(x + 43) = -5 + jx\\ 2x^2+86x+7x+301+5-jx=0\\ 2x^2+(93-j)x+306=0\)

\(x = \large {93+j \pm \sqrt{ (93+j)^2-4\cdot 2\cdot 306} \over 2\cdot 306}\)

\( (93+j)^2-4\cdot 2\cdot 306\geq 0\\ 8649+186j+j^2-2448\geq 0\\ j^2+186j+6101\geq 0\)

\(j=-93\pm \sqrt{8649-6101}\\ j=-93\pm 50.478\)

\(j\in \{-42.522,-149.477\}\)

 

If the value of \(j\in \{-42.522,-149.477\}\),

the equation (2x + 7) (x + 43) = -5 + jx has exactly one real solution.

 

If the value of

\(j\in \mathbb R\ |-149.477\leq j\leq -42.522\),

the equation (2x + 7) (x + 43) = -5 + jx has  two real solutions each.

laugh  !

 Jan 31, 2021
edited by asinus  Jan 31, 2021
edited by asinus  Jan 31, 2021
edited by asinus  Jan 31, 2021
edited by asinus  Jan 31, 2021

47 Online Users

avatar