What real value of t produces the smallest value of the quadratic t^2 - 9t - 36 + t^2 + 7t - 16?
What real value of t produces the smallest value of the quadratic t^2 - 9t - 36 + t^2 + 7t - 16?
Hello Guest!
\(f(t)=2t^2 - 2t - 52\\ \frac{df(t)}{dt}=4t-2=0\\ 4t=2\\ \color{blue}t=\frac{1}{2}\)
\(t=\frac{1}{2}\) produces the smallest value of the quadratic t^2 - 9t - 36 + t^2 + 7t - 16.
!