+0  
 
0
51
1
avatar

If (ax+b)(bx+a)=26x^2+cx+26, where a, b, and c are distinct integers, what is the minimum possible value of c, the coefficient of x?

 Nov 6, 2018

Best Answer 

 #1
avatar+3561 
+1

\((a x + b)(b x + a) = ab x^2 + (a^2+b^2)x+ab = 26x^2 + c x + 26\\ \\ ab = 26\\ c = a^2 + b^2\)

 

\(\text{so basically we're minimizing }a^2+b^2 \text{ subject to }ab=26\\ \text{and subject to }a,b,c \in \mathbb{Z}\)

 

\(26 \text{ can be factored as }(2,13),~(1,26)\\ 2^2 + 13^2 = 173\\ 1^2 + 26^2 = 676\\ \text{and 173 is the smaller of those two so }\\ c=173\)

.
 Nov 6, 2018
 #1
avatar+3561 
+1
Best Answer

\((a x + b)(b x + a) = ab x^2 + (a^2+b^2)x+ab = 26x^2 + c x + 26\\ \\ ab = 26\\ c = a^2 + b^2\)

 

\(\text{so basically we're minimizing }a^2+b^2 \text{ subject to }ab=26\\ \text{and subject to }a,b,c \in \mathbb{Z}\)

 

\(26 \text{ can be factored as }(2,13),~(1,26)\\ 2^2 + 13^2 = 173\\ 1^2 + 26^2 = 676\\ \text{and 173 is the smaller of those two so }\\ c=173\)

Rom Nov 6, 2018

36 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.