+0

+1
328
1
+75

The angles of a quadrilateral are \$x\$, \$5x + 15^\circ \$, \$3x - 25^\circ\$, and \$4x - 20^\circ \$. Find the measure of the largest angle of the quadrilateral.

eileenthecoolbean  Aug 7, 2017

#1
+6604
+3

The sum of the angles in a quadrilateral  =  360°     So.....

x   +   5x + 15   +   3x - 25   +   4x - 20     =  360

Combine like terms.

13x - 30  =  360

Add  30  to both sides of the equation.

13x  =  390

Divide both sides of the equation by  13  .

x  =  30

Since  x  is positive, the largest angle must be  5x + 15 .

( It has the largest coefficient of  x  and all the others either add nothing or subtract something. )

And..... if  x  =  30,       5x + 15  =  5(30) + 15  =  165°

hectictar  Aug 7, 2017
Sort:

#1
+6604
+3

The sum of the angles in a quadrilateral  =  360°     So.....

x   +   5x + 15   +   3x - 25   +   4x - 20     =  360

Combine like terms.

13x - 30  =  360

Add  30  to both sides of the equation.

13x  =  390

Divide both sides of the equation by  13  .

x  =  30

Since  x  is positive, the largest angle must be  5x + 15 .

( It has the largest coefficient of  x  and all the others either add nothing or subtract something. )

And..... if  x  =  30,       5x + 15  =  5(30) + 15  =  165°

hectictar  Aug 7, 2017

### 30 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details