+0  
 
+1
14
1
avatar+1887 

A circle is inscribed in a quarter-circle, as shown below.  If the radius of the quarter-circle is $4,$ then find the radius of the circle.
 

 Jan 7, 2024
 #1
avatar+129830 
+1

Let O be the center of the quarter-circle

 

Let M    be the intersection point of the edges of  both circles

 

Draw  a tangent line  to  the quarter circle at M and  let N be any other point on this line

 

Angle  OMN = 90°

 

Let P be the center of the small circle

 

Angle PMN  also   = 90°   and PM   must be the radius of the smaller circle since it forms a 90° with the tangent line

 

Then  PM  must lie  on  OM  since angle PMN  = angle OMN

 

Let S be the other intersection of the radius of the quarter circle and  the eadge of the  smaller circle

 

PS =  radius of the small circle = r

OP  =  OM - PN  =   4 - r

OS = 2 + r

 

Triangle  OPS  forms a right triangle such that

 

OP^2  =  PS^2  + OS^2

 

(4 - r)^2  =  r^2  + ( 2 + r)^2

 

r^2 - 8r + 16 =  r^2  + r^2 + 4r + 4

 

r^2  + 12r - 12  =  0

 

r^2 + 12r  =  12                complete the square on r

 

r^2 + 12r + 36   = 12 + 36

 

(r + 6)^2  =  48         take the positive root

 

r + 6   = sqrt (48)

 

r = sqrt (48)  -  6

 

r = 4sqrt (3)  - 6    ≈  .923

 

 

cool cool cool

 Jan 7, 2024

2 Online Users

avatar