+0  
 
0
460
8
avatar+270 

OABC is a square. M is the mid-point of OA, and Q divides BC in the ratio 1:3. AP and MQ meet at P.

If O to A = a, O to C = c

express O to P in terms of a and c.

 

I'm bad with vectors...

Somone help me plz...?

physics
flflvm97  Dec 11, 2014

Best Answer 

 #9
avatar+270 
+10

$$\vec{AC}=-\mathbf{a}+\mathbf{c}$$

$$\vec{MQ}=\frac{1}{2}\mathbf{a}+\mathbf{c}-\frac{1}{4}\mathbf{a}$$

         $$=\frac{1}{4}\mathbf{a}+\mathbf{c}$$

$$\vec{OP}=\vec{OM}+\vec{MP}$$

        $$=\vec{OA}+\vec{AP}$$

$$\vec{MP}=\lambda(\frac{1}{4}\mathbf{a}+\mathbf{c})$$

         $$=\frac{\lambda}{4}\mathbf{a}+\lambda \mathbf{c}$$

$$\vec{AP}=\mu(-\mathbf{a}+\mathbf{c})$$

        $$=-\mu\mathbf{a}+\mu\mathbf{c}$$

As $$\vec{AP}$$ and $$\vec{MP}$$ intersect, if I let them equal, I can find the $$P$$.

$$\frac{\lambda}{4}\mathbf{a}+\lambda \mathbf{c}$$ $$=-\mu\mathbf{a}+\mu\mathbf{c}$$

Therefore, $$\frac{\lambda}{4}=-\mu$$ and $$\lambda = \mu$$

Then if I subtitute $$\mu$$ to $$\frac{\lambda}{4}=-\mu$$,

$$\frac{\mu}{4}=-\mu$$

$$\mu=-4$$

Sub -4 to $$\vec{MP}=\lambda(\frac{1}{4}\mathbf{a}+\mathbf{c})$$    (As  $$\mu = \lambda$$)

$$\vec{MP}=-4(\frac{1}{4}\mathbf{a}+\mathbf{c})$$

             $$=-\mathbf{a}-4\mathbf{c}$$

Finally, 

$$\vec{OP} = \vec{OM}+\vec{MP}$$

        $$=\frac{1}{2}\mathbf{a}+(-\mathbf{a}-4\mathbf{c})$$

        $$=\frac{1}{2}\mathbf{a}-\mathbf{a}-4\mathbf{c}$$

        $$=-\frac{1}{2}\mathbf{a}-4\mathbf{c}$$

 

flflvm97  Dec 11, 2014
Sort: 

8+0 Answers

 #1
avatar+91436 
+5

AP and MQ meet at P

I assume that you mean

AC and MQ meet at P  ??

Melody  Dec 11, 2014
 #2
avatar+91436 
0

It is a square - so 

OA=OC

so why have 2 different pronumerals?

Melody  Dec 11, 2014
 #3
avatar+270 
0

Here you are.

flflvm97  Dec 11, 2014
 #4
avatar+270 
+8

It has different pronumerals, because it's vector.

vector is not only about how long or how big, it's also about the direction of it.

flflvm97  Dec 11, 2014
 #7
avatar+270 
0

I don't know the answer yet, I'm gonna ask it to my teacher today.

But I think you are on right line.

Anyway, I will post the full answer here today.

Thanks for answering though 

flflvm97  Dec 11, 2014
 #8
avatar+18827 
+5

OABC is a square. M is the mid-point of OA, and Q divides BC in the ratio 1:3. AC and MQ meet at P.  If O to A = a, O to C = c .  Express O to P in terms of a and c.

1.  $$\small{\text{
If $ \vec{Q} = \vec{c} + \frac{3}{4}\vec{a}
$ and $ \vec{M} = \frac{1}{2}\vec{a} $
so line $ \overline{MQ} $ is $\frac{1}{2}\vec{a} + \lambda ( \vec{Q}-\vec{M}) = \frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) $
}}$$

2.  $$\small{\text{
Line $ \overline{AC} $ is $\vec{a} + \mu ( \vec{c}-\vec{a}) $
}}$$

3.

$$\\\small{\text{
The intersection of the line $\overline{MQ}$ with the line $\overline{AC}$ is
}}
$\\$\small{\text{
the point $\vec{P} = \frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) $.}}
$\\$\small{\text{
We equate:
$
\frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) = \vec{a} + \mu ( \vec{c}-\vec{a})
$
}}
$\\$\small{\text{
so
$
\lambda (\vec{c}+\frac{1}{4}\vec{a}) - \mu ( \vec{c}-\vec{a}) = \frac{1}{2}\vec{a}
$
}}
$\\$\small{\text{
The perpendicular vector of $(\vec{c}-\vec{a})$ is $(\vec{c}+\vec{a})$, because we have a square and
}}
$\\$\small{\text{
$(\vec{c}-\vec{a}) * ( \vec{c}+\vec{a} ) = 0$, because the dot-product of vectors
}}
$\\$\small{\text{
perpendicular to each other is a Zero.
}}
$\\$\small{\text{
We multiply our equation with $( \vec{c}+\vec{a} )$ and see what passed:
}}$$

$$$\\$\small{\text{
$
\lambda (\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a}) - \mu \underbrace{( \vec{c}-\vec{a}) (\vec{c}+\vec{a})}_{dot-product = 0} = \frac{1}{2}\vec{a} (\vec{c}+\vec{a})
$
}}
$\\$\small{\text{
Now we can dissolve after $\lambda$ and receive for $\lambda$:
}}
$\\$\small{\text{
$
\lambda = \dfrac{
\frac{1}{2}\vec{a} (\vec{c}+\vec{a}) }
{(\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a})
}
$
}}
$\\$
\boxed{
\small{\text{
$\vec{P} = \frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) $}} = \lambda \vec{c} + (\frac{1}{2}+\frac{\lambda}{4})\vec{a}
$
}}}$$

 

heureka  Dec 11, 2014
 #9
avatar+270 
+10
Best Answer

$$\vec{AC}=-\mathbf{a}+\mathbf{c}$$

$$\vec{MQ}=\frac{1}{2}\mathbf{a}+\mathbf{c}-\frac{1}{4}\mathbf{a}$$

         $$=\frac{1}{4}\mathbf{a}+\mathbf{c}$$

$$\vec{OP}=\vec{OM}+\vec{MP}$$

        $$=\vec{OA}+\vec{AP}$$

$$\vec{MP}=\lambda(\frac{1}{4}\mathbf{a}+\mathbf{c})$$

         $$=\frac{\lambda}{4}\mathbf{a}+\lambda \mathbf{c}$$

$$\vec{AP}=\mu(-\mathbf{a}+\mathbf{c})$$

        $$=-\mu\mathbf{a}+\mu\mathbf{c}$$

As $$\vec{AP}$$ and $$\vec{MP}$$ intersect, if I let them equal, I can find the $$P$$.

$$\frac{\lambda}{4}\mathbf{a}+\lambda \mathbf{c}$$ $$=-\mu\mathbf{a}+\mu\mathbf{c}$$

Therefore, $$\frac{\lambda}{4}=-\mu$$ and $$\lambda = \mu$$

Then if I subtitute $$\mu$$ to $$\frac{\lambda}{4}=-\mu$$,

$$\frac{\mu}{4}=-\mu$$

$$\mu=-4$$

Sub -4 to $$\vec{MP}=\lambda(\frac{1}{4}\mathbf{a}+\mathbf{c})$$    (As  $$\mu = \lambda$$)

$$\vec{MP}=-4(\frac{1}{4}\mathbf{a}+\mathbf{c})$$

             $$=-\mathbf{a}-4\mathbf{c}$$

Finally, 

$$\vec{OP} = \vec{OM}+\vec{MP}$$

        $$=\frac{1}{2}\mathbf{a}+(-\mathbf{a}-4\mathbf{c})$$

        $$=\frac{1}{2}\mathbf{a}-\mathbf{a}-4\mathbf{c}$$

        $$=-\frac{1}{2}\mathbf{a}-4\mathbf{c}$$

 

flflvm97  Dec 11, 2014
 #10
avatar+18827 
+8

$$P.S. \qquad \lambda= \frac{ \frac{1}{2}\vec{a}(\vec{c}+\vec{a} )
} { (\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a})
} =
\frac{ \frac{1}{2}\vec{a}\vec{c} + \frac{1}{2}a^2 }{ c^2 + \vec{c}\vec{a} + \frac{1}{4}\vec{a}\vec{c} +\frac{1}{4}a^2 }
=\frac{0 + \frac{1}{2}a^2 }{ a^2+0+0+ \frac{1}{4}a^2 } =
\frac{ \frac{1}{2}a^2 }{\frac{5}{4}a^2 } = \frac{2}{5}$$

$$\small{\text{
$ \vec{a}*\vec{c} =0 \quad \vec{a} $ and $ \vec{c} $ are perpendicular and $ a^2=c^2 $ is a square.
}}$$

$$\lambda= \frac{2}{5}$$

$$\vec{OP}=\frac{2}{5}\vec{c}+\frac{3}{5}\vec{a}$$

Sorry flflvm97 you have a missing term in your equation:

$$\vec{MA}+\vec{AP}-\vec{MP}=0 \\
\vec{MP}=\vec{MA}+\vec{AP} \\
\lambda(\frac{1}{4}\vec{a}+\vec{c})=\textcolor[rgb]{1,0,0}{\frac{1}{2}\vec{a}} +\mu(-\vec{a}+\vec{c})$$

heureka  Dec 14, 2014

11 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details