OABC is a square. M is the mid-point of OA, and Q divides BC in the ratio 1:3. AP and MQ meet at P.
If O to A = a, O to C = c
express O to P in terms of a and c.
I'm bad with vectors...
Somone help me plz...?
$$\vec{AC}=-\mathbf{a}+\mathbf{c}$$
$$\vec{MQ}=\frac{1}{2}\mathbf{a}+\mathbf{c}-\frac{1}{4}\mathbf{a}$$
$$=\frac{1}{4}\mathbf{a}+\mathbf{c}$$
$$\vec{OP}=\vec{OM}+\vec{MP}$$
$$=\vec{OA}+\vec{AP}$$
$$\vec{MP}=\lambda(\frac{1}{4}\mathbf{a}+\mathbf{c})$$
$$=\frac{\lambda}{4}\mathbf{a}+\lambda \mathbf{c}$$
$$\vec{AP}=\mu(-\mathbf{a}+\mathbf{c})$$
$$=-\mu\mathbf{a}+\mu\mathbf{c}$$
As $$\vec{AP}$$ and $$\vec{MP}$$ intersect, if I let them equal, I can find the $$P$$.
$$\frac{\lambda}{4}\mathbf{a}+\lambda \mathbf{c}$$ $$=-\mu\mathbf{a}+\mu\mathbf{c}$$
Therefore, $$\frac{\lambda}{4}=-\mu$$ and $$\lambda = \mu$$
Then if I subtitute $$\mu$$ to $$\frac{\lambda}{4}=-\mu$$,
$$\frac{\mu}{4}=-\mu$$
$$\mu=-4$$
Sub -4 to $$\vec{MP}=\lambda(\frac{1}{4}\mathbf{a}+\mathbf{c})$$ (As $$\mu = \lambda$$)
$$\vec{MP}=-4(\frac{1}{4}\mathbf{a}+\mathbf{c})$$
$$=-\mathbf{a}-4\mathbf{c}$$
Finally,
$$\vec{OP} = \vec{OM}+\vec{MP}$$
$$=\frac{1}{2}\mathbf{a}+(-\mathbf{a}-4\mathbf{c})$$
$$=\frac{1}{2}\mathbf{a}-\mathbf{a}-4\mathbf{c}$$
$$=-\frac{1}{2}\mathbf{a}-4\mathbf{c}$$
.
It has different pronumerals, because it's vector.
vector is not only about how long or how big, it's also about the direction of it.
I don't know the answer yet, I'm gonna ask it to my teacher today.
But I think you are on right line.
Anyway, I will post the full answer here today.
Thanks for answering though
OABC is a square. M is the mid-point of OA, and Q divides BC in the ratio 1:3. AC and MQ meet at P. If O to A = a, O to C = c . Express O to P in terms of a and c.
1. $$\small{\text{
If $ \vec{Q} = \vec{c} + \frac{3}{4}\vec{a}
$ and $ \vec{M} = \frac{1}{2}\vec{a} $
so line $ \overline{MQ} $ is $\frac{1}{2}\vec{a} + \lambda ( \vec{Q}-\vec{M}) = \frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) $
}}$$
2. $$\small{\text{
Line $ \overline{AC} $ is $\vec{a} + \mu ( \vec{c}-\vec{a}) $
}}$$
3.
$$\\\small{\text{
The intersection of the line $\overline{MQ}$ with the line $\overline{AC}$ is
}}
$\\$\small{\text{
the point $\vec{P} = \frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) $.}}
$\\$\small{\text{
We equate:
$
\frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) = \vec{a} + \mu ( \vec{c}-\vec{a})
$
}}
$\\$\small{\text{
so
$
\lambda (\vec{c}+\frac{1}{4}\vec{a}) - \mu ( \vec{c}-\vec{a}) = \frac{1}{2}\vec{a}
$
}}
$\\$\small{\text{
The perpendicular vector of $(\vec{c}-\vec{a})$ is $(\vec{c}+\vec{a})$, because we have a square and
}}
$\\$\small{\text{
$(\vec{c}-\vec{a}) * ( \vec{c}+\vec{a} ) = 0$, because the dot-product of vectors
}}
$\\$\small{\text{
perpendicular to each other is a Zero.
}}
$\\$\small{\text{
We multiply our equation with $( \vec{c}+\vec{a} )$ and see what passed:
}}$$
$$$\\$\small{\text{
$
\lambda (\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a}) - \mu \underbrace{( \vec{c}-\vec{a}) (\vec{c}+\vec{a})}_{dot-product = 0} = \frac{1}{2}\vec{a} (\vec{c}+\vec{a})
$
}}
$\\$\small{\text{
Now we can dissolve after $\lambda$ and receive for $\lambda$:
}}
$\\$\small{\text{
$
\lambda = \dfrac{
\frac{1}{2}\vec{a} (\vec{c}+\vec{a}) }
{(\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a})
}
$
}}
$\\$
\boxed{
\small{\text{
$\vec{P} = \frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) $}} = \lambda \vec{c} + (\frac{1}{2}+\frac{\lambda}{4})\vec{a}
$
}}}$$
$$\vec{AC}=-\mathbf{a}+\mathbf{c}$$
$$\vec{MQ}=\frac{1}{2}\mathbf{a}+\mathbf{c}-\frac{1}{4}\mathbf{a}$$
$$=\frac{1}{4}\mathbf{a}+\mathbf{c}$$
$$\vec{OP}=\vec{OM}+\vec{MP}$$
$$=\vec{OA}+\vec{AP}$$
$$\vec{MP}=\lambda(\frac{1}{4}\mathbf{a}+\mathbf{c})$$
$$=\frac{\lambda}{4}\mathbf{a}+\lambda \mathbf{c}$$
$$\vec{AP}=\mu(-\mathbf{a}+\mathbf{c})$$
$$=-\mu\mathbf{a}+\mu\mathbf{c}$$
As $$\vec{AP}$$ and $$\vec{MP}$$ intersect, if I let them equal, I can find the $$P$$.
$$\frac{\lambda}{4}\mathbf{a}+\lambda \mathbf{c}$$ $$=-\mu\mathbf{a}+\mu\mathbf{c}$$
Therefore, $$\frac{\lambda}{4}=-\mu$$ and $$\lambda = \mu$$
Then if I subtitute $$\mu$$ to $$\frac{\lambda}{4}=-\mu$$,
$$\frac{\mu}{4}=-\mu$$
$$\mu=-4$$
Sub -4 to $$\vec{MP}=\lambda(\frac{1}{4}\mathbf{a}+\mathbf{c})$$ (As $$\mu = \lambda$$)
$$\vec{MP}=-4(\frac{1}{4}\mathbf{a}+\mathbf{c})$$
$$=-\mathbf{a}-4\mathbf{c}$$
Finally,
$$\vec{OP} = \vec{OM}+\vec{MP}$$
$$=\frac{1}{2}\mathbf{a}+(-\mathbf{a}-4\mathbf{c})$$
$$=\frac{1}{2}\mathbf{a}-\mathbf{a}-4\mathbf{c}$$
$$=-\frac{1}{2}\mathbf{a}-4\mathbf{c}$$
$$P.S. \qquad \lambda= \frac{ \frac{1}{2}\vec{a}(\vec{c}+\vec{a} )
} { (\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a})
} =
\frac{ \frac{1}{2}\vec{a}\vec{c} + \frac{1}{2}a^2 }{ c^2 + \vec{c}\vec{a} + \frac{1}{4}\vec{a}\vec{c} +\frac{1}{4}a^2 }
=\frac{0 + \frac{1}{2}a^2 }{ a^2+0+0+ \frac{1}{4}a^2 } =
\frac{ \frac{1}{2}a^2 }{\frac{5}{4}a^2 } = \frac{2}{5}$$
$$\small{\text{
$ \vec{a}*\vec{c} =0 \quad \vec{a} $ and $ \vec{c} $ are perpendicular and $ a^2=c^2 $ is a square.
}}$$
$$\lambda= \frac{2}{5}$$
$$\vec{OP}=\frac{2}{5}\vec{c}+\frac{3}{5}\vec{a}$$
Sorry flflvm97 you have a missing term in your equation:
$$\vec{MA}+\vec{AP}-\vec{MP}=0 \\
\vec{MP}=\vec{MA}+\vec{AP} \\
\lambda(\frac{1}{4}\vec{a}+\vec{c})=\textcolor[rgb]{1,0,0}{\frac{1}{2}\vec{a}} +\mu(-\vec{a}+\vec{c})$$