+0  
 
0
821
0
avatar+333 

It is given that, for non-negative integers n,

\(l_n=\int_{0}^{1/2\pi} sin^nx dx\)

Show that \(l_n=\frac{n-1}{n}l_{n-2}\) for any \(n\geq 2\)

Explain why \(l_{2n+1} < l_{2n-1}\)

It is given that \(l_{2n+1}< l_{2n}<l_{2n-1}\) Take \(n=5\) to find an intervel within which value of \(\pi\) lies.

 
 Feb 23, 2016

3 Online Users