+0

# Question

0
57
1

Medians $\overline{DP}$ and $\overline{EQ}$ of $\triangle DEF$ are perpendicular. If $DP= 18$ and $EQ = 24$, then what is ${DF}$?

Guest Mar 25, 2018
Sort:

### 1+0 Answers

#1
+85759
+1

Let R be the intersection of the medians

DR  =1/3  of DP  = 6

ER  =1/3  of EQ  = 8

So....since the medians are perpendicular....then  DE  is the hypotenuse of right triangle DRE

So....call S  the midpoint  of DE...so  DS  = 5

So.... SF  is another median

The sine of RDE  = 8/10  = 4/5

cos RDE   = 3/5

So the distance  from  R to S  can be found using the Law of Cosines  as

RS^2  = DS^2 + DR^2 -2(DS * DR)cos(RDE)

RS^2  = 5*2 + 6^2  - 2(30)cosRDE

RS^2  = 61 - 60(3/5)

RS^2  = 61  - 36

RS^2  = 25

RS  = 5

But  RS  = 1/3  of SF....so SF  = 15

We need to find  sin DSR

Using the Law of Sines we have

sinDSR / DR  = sinRDE/ RS

sinDSR/6  = sinRDE / 5

sinDSR / 6   = (4/5) / 5

sinDSR / 6  = 4/25

sinDSR  = 24/25

And the cos DSR   = √ [1  - (24/25)^2 ]  = √ [625 - 576 ] / 25  = √49 / 25 =  7/25

So...we can find DF with the Law of Cosines as

DF^2  = DS^2  + SF^2  - 2(DS*SF)cos(DSR)

DF^2  = 5^2  + 15^2  - 2(5*15)(7/25)

DF^2  = 250  - 2*3*7

DF  = 250 - 42

DF^2  = 208

DF = √208  = 4√13

CPhill  Mar 25, 2018

### 31 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details