Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
-1
676
2
avatar+288 

Calculate

1123+1234+...+199100101

 

(A)502920200 (B)503920200 (C)304920200 (D)50920200 (E)504920200

Thanks! 

 Mar 9, 2020
 #1
avatar+26396 
+1

Calculate

1123+1234++199100101

 

1123+1234++199100101=99n=11n(n+1)(n+2)=99n=11n(1(n+1)(n+2))=99n=11n(1n+11n+2)=99n=1(1n(n+1)1n(n+2))=99n=1(1n1n+112(1n1n+2))=99n=1(12n1n+1+12(n+2))=99n=112n99n=11n+1+99n=112(n+2)

 

99n=112n99n=11n+1+99n=112(n+2)=1299n=11n99n=11n+1+1299n=11n+2=1297n=11n+298n=01n+2+(121100+121101+1297n=11n+2)=(1211+1212+1297n=11n+2)98n=01n+2+(12100+12101+1297n=11n+2)=(12+14+1297n=11n+2)1298n=11n+2+(12100+12101+1297n=11n+2)=(12+14+1297n=11n+2)12110097n=11n+2+(12100+12101+1297n=11n+2)=12+14121100+1200+1202+1297n=11n+297n=11n+2+1297n=11n+2=141100+1200+1202+97n=11n+297n=11n+2=141100+1200+1202=142200+1200+1202=141200+1202=12(121100+1101)=12(98200+1101)=12(98101+200200101)=49101+100200101=504920200

 

laugh

 Mar 12, 2020
 #2
avatar
0

∑[ 1 / ( n^3 + 3 n^2 + 2 n), n, 1, 99] =5049 / 20200

 Mar 12, 2020

2 Online Users

avatar