+0  
 
0
33
1
avatar

Suppose $f(x),g(x),h(x)$ are all linear functions, and $j(x)$ and $k(x)$ are defined by$$j(x) = \max\{f(x),g(x),h(x)\},$$$$k(x) = \min\{f(x),g(x),h(x)\}.$$This means that, for each $x$, we define $j(x)$ to be equal to either $f(x),$ $g(x),$ or $h(x),$ whichever is greatest; similarly, $k(x)$ is the least of these three values.

Shown below is the graph of $y=j(x)$ for $-3.5\le x\le 3.5$.

Let $\ell$ be the length of the graph of $y=k(x)$ for $-3.5\le x\le 3.5$. What is the value of $\ell^2$?

 

 Nov 8, 2021
 #1
avatar
0

$\ell^2 = 180$

 Nov 8, 2021

7 Online Users