+0  
 
+5
1441
1
avatar+64 

Your teacher's work station is made up of two identical desks arranged as shown.

a. Write an equation in terms of x that relates the area of Desk 1 to the area of Desk 2.

b. What is the value of x?

c. Find the area of the top of your teacher's work station.

Please show work?

 Apr 15, 2016
edited by MajikMicMath  Apr 15, 2016
edited by MajikMicMath  Apr 15, 2016

Best Answer 

 #1
avatar+426 
+10

a)

 

x lesser than 6 = x more than 2

    (6 - x) = (2 + x)                          | - x

b)  Method 1

     (6 - 2x) = 2                                | + 2x

     6 = 2 + 2x                                 | - 2

     2x=4

     x = 2

     Method 2

     \(\tt \, Area\,of\,Desk\,1\rightarrow (x)(2+x) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (2x+x^2) \,ft^2 \\ Area\,of\,Desk\,2 \rightarrow (x)(6-x) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (6x-x^2)\,ft^2\\ This\,should\,be\,true:(2x+x^2)=(6x-x^2)\quad|\,-(6x-x^2)\\2x^2-4x=0\\ Two\,possible\,results\,of\,x.x = 0\,and\,x=2.\\ As\,an\,area\,of\,0\,doesn't\,make\,sense,\,then\,x=2.\)

c) \(x=2,\\ 2(2x+x^2) = 2(2 \times 2 + 2^2) \\ = 2(4+4) \\ = 2(8) \\ = 16\)

 Apr 15, 2016
 #1
avatar+426 
+10
Best Answer

a)

 

x lesser than 6 = x more than 2

    (6 - x) = (2 + x)                          | - x

b)  Method 1

     (6 - 2x) = 2                                | + 2x

     6 = 2 + 2x                                 | - 2

     2x=4

     x = 2

     Method 2

     \(\tt \, Area\,of\,Desk\,1\rightarrow (x)(2+x) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (2x+x^2) \,ft^2 \\ Area\,of\,Desk\,2 \rightarrow (x)(6-x) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (6x-x^2)\,ft^2\\ This\,should\,be\,true:(2x+x^2)=(6x-x^2)\quad|\,-(6x-x^2)\\2x^2-4x=0\\ Two\,possible\,results\,of\,x.x = 0\,and\,x=2.\\ As\,an\,area\,of\,0\,doesn't\,make\,sense,\,then\,x=2.\)

c) \(x=2,\\ 2(2x+x^2) = 2(2 \times 2 + 2^2) \\ = 2(4+4) \\ = 2(8) \\ = 16\)

MWizard2k04 Apr 15, 2016

1 Online Users

avatar