Given that [ABC]=10find [BCD]\([asy] pair A = (0,0); pair B = (6,0); pair C = (11,5); pair D = (16,0); draw(A--C--D--cycle); draw(B--C); label("$A$", A, W); label("$B$", B, S); label("$C$", C, N); label("$D$", D, E); label("$6$", (3,0), S); label("$10$", (11,0), S); [/asy]\)
The triangle below has area 14 and height 6. Find length AC
\([asy] size(3cm); pair A = (0,0); pair B = (4,6); pair C = (6,0); pair D = (4,0); draw(A--B--C--cycle); draw(B--D); draw(rightanglemark(C,D,B,20)); label("$6$", (4,3), W); label("$A$", A, W); label("$B$", B, NW); label("$C$", C, E); label("$D$", D, S); [/asy]\)
In the diagram below,WY=9 ,XZ=7 ,[AWX]=30 , and [AYZ] = 20. Find .[AXY]
\([asy] pair A,WW,X,Y,Z; WW = (0,0); X = (0.5,0); Y = (1,0); Z = (1.3,0); A = (0.4,0.8); draw(Y--A--WW--X--Y--Z--A--X); label("$A$",A,N); label("$W$",WW,S); label("$X$",X,S); label("$Y$",Y,S); label("$Z$",Z,S); [/asy]\)
A rectangle is divided into four small rectangles as shown. The perimeters of three of the four small rectangles are 24, 32 and 42, respectively. The remaining small rectangle has the shortest perimeter among the four. What is the perimeter of remaining rectangle?
\([asy] size(7cm); pair A,B,C,D,EE,F,G,H; A=(0,0); B=(16,0); D=(0,7); C=B+D; EE=(0,3); F=(6,0); G=EE+B-A; H=D+F; draw(A--B--C--D--cycle); draw(F--H^^EE--G); [/asy]\)