If $f(0)=0$, $f(1)=2$, $f(2)=5$ and $f(x)=ax^2+bx+c$, what is the value of $f(3)$?
f(0) = a*0^2 + b*0 + c = 0
0a + 0b + c = 0
c = 0
f(1) = a*1^2 + b*1 + c = 2
a + b + c = 2
a + b = 2
f(2) = a*2^2 + b*2 + c = 5
4a + 2b + c = 5
4a + 2b = 5
2a = 1
a = .5
b = 1.5
f(x) = .5x^2 + 1.5x + 0
f(3) = .5(3)^2 + 1.5(3) + 0 = 9
=^._.^=