If sin(A) = -0.4382. 0 < A < 360.
Find two possible values for A.
\(\begin{array}{|rcll|} \hline \sin(A) &=& -0.4382 \\ A_1 &=& \arcsin(-0.4382) + z\cdot 360^{\circ} \quad & | \quad z \in \mathbb{Z} \\ A_1 &=& -25.9890903445^{\circ} + z\cdot 360^{\circ} \\ A_1 &=& -25.9890903445^{\circ}+360^{\circ} + z\cdot 360^{\circ} \\ \mathbf{A_1} &\mathbf{=}& \mathbf{334.010909656^{\circ} + z\cdot 360^{\circ}} \\\\ \sin(A)=\sin(180^{\circ}-A) &=&-0.4382 \\ 180^{\circ}-A_2 &=& \arcsin(-0.4382) + z\cdot 360^{\circ} \quad & | \quad z \in Z \\ A_2 &=& 180^{\circ}- \arcsin(-0.4382) + z\cdot 360^{\circ} \\ A_2 &=& 180^{\circ}- (-25.9890903445^{\circ}) + z\cdot 360^{\circ} \\ A_2 &=& 180^{\circ}+25.9890903445^{\circ}) + z\cdot 360^{\circ} \\ \mathbf{A_2} &\mathbf{=}&\mathbf{205.989090344^{\circ}+ z\cdot 360^{\circ}} \\ \hline \end{array} \)
0 < A < 360.
\(\begin{array}{|rcll|} \hline \mathbf{A_1} &\mathbf{=}& \mathbf{334.010909656^{\circ} } \\ \mathbf{A_2} &\mathbf{=}& \mathbf{205.989090344^{\circ}} \\ \hline \end{array}\)