Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
371
5
avatar+239 

Answer (a^2)/3

 Apr 19, 2022

Best Answer 

 #4
avatar+397 
+6

Hi OldTimer here's one method.

Sketch the graph and take a strip parallel with the x - axis, distance y from the axis and width delta y, from the curve on the left to the vertical at x = a on the right.

Spin this around the x - axis, forming a cylinder.

Vol of cylinder =

 {π(y+δy)2πy2}(ax)=2πyδy(ax),

(ignoring 2nd order terms, here and elsewhere).

All points on the cylinder are distance y from the x - axis so its moment of inertia (or second moment) about the x - axis

=2πyδy(ax).y2=2πy3(ax)δy.

This now has to be summed for all cylinders between y = 0 and y = a and taken in the limit as delta y tends to zero.

That gets you the integral

a02πy3(ay2a)dy=πa56.

Now express this in the form Mk^2, where M is the mass of the solid and k is its radius of gyration.

If unit mass is equal to unit volume, then M is simply the volume of the solid. So,

M=πa0y2dx=πa0axdx=πa32.

Finally then, the moment of inertia of the solid = πa56=πa32.a23=M(a23),

meaning that the square of the radius of gyration is (a^2)/3.

 

An alternative method would be to split the solid into circular discs perpendicular to the x - axis, and to sum these from x = 0 to x = a.

If you do that, you could make use of the standard result for the moment of inertia of a disc.

 Apr 21, 2022
 #4
avatar+397 
+6
Best Answer

Hi OldTimer here's one method.

Sketch the graph and take a strip parallel with the x - axis, distance y from the axis and width delta y, from the curve on the left to the vertical at x = a on the right.

Spin this around the x - axis, forming a cylinder.

Vol of cylinder =

 {π(y+δy)2πy2}(ax)=2πyδy(ax),

(ignoring 2nd order terms, here and elsewhere).

All points on the cylinder are distance y from the x - axis so its moment of inertia (or second moment) about the x - axis

=2πyδy(ax).y2=2πy3(ax)δy.

This now has to be summed for all cylinders between y = 0 and y = a and taken in the limit as delta y tends to zero.

That gets you the integral

a02πy3(ay2a)dy=πa56.

Now express this in the form Mk^2, where M is the mass of the solid and k is its radius of gyration.

If unit mass is equal to unit volume, then M is simply the volume of the solid. So,

M=πa0y2dx=πa0axdx=πa32.

Finally then, the moment of inertia of the solid = πa56=πa32.a23=M(a23),

meaning that the square of the radius of gyration is (a^2)/3.

 

An alternative method would be to split the solid into circular discs perpendicular to the x - axis, and to sum these from x = 0 to x = a.

If you do that, you could make use of the standard result for the moment of inertia of a disc.

Tiggsy Apr 21, 2022
 #5
avatar+239 
+2

Thanks for that Tiggsy its great...its the solution I was looking for!! . Unknowingly I went for your second alternative ...only cos I had found a formula.

 Apr 22, 2022

3 Online Users

avatar
avatar