+0  
 
+15
124
3
avatar+1808 

 

Apparently my question is not detailed enough...

EighthMersennePrime  Feb 14, 2017

Best Answer 

 #3
avatar+1808 
+20

I doubt you will read this, but I'm actually from New Zealand and I'm in Auckland.

EighthMersennePrime  Feb 15, 2017
Sort: 

3+0 Answers

 #1
avatar+89750 
+10

Hi Eight MersenePrime,

 

I was thinking about your username...   I looked up meridians to see where you might come from.

I am thinking that maybe you are from Strasbourg in France....  :)

 

I had not realized before that Bamako is further west than london - quite a lot further west !!

I love looking at maps :))

 

 

 

 

Now to answer your question :)

 

cos(19\pi/12)

 

\(cos(\frac{19\pi}{12})\\ \text{4th quadrant}\\ =+cos(\frac{(24-19)\pi}{12})\\ =+cos(\frac{5\pi}{12})\\ =+cos(\frac{3\pi}{12}+\frac{2\pi}{12})\\ =cos(\frac{\pi}{4}+\frac{\pi}{6})\\ =cos(\frac{\pi}{4})cos(\frac{\pi}{6})-sin(\frac{\pi}{4})sin(\frac{\pi}{6})\\ =cos(45^\circ)cos(30^\circ)-sin(45^\circ)sin(30^\circ)\\ =\frac{1}{\sqrt2}\times \frac{\sqrt3}{2}-\frac{1}{\sqrt2}\times \frac{1}{2}\\ =\frac{\sqrt3-1}{2\sqrt2}\\ =\frac{\sqrt3-1}{2\sqrt2}\times \frac{\sqrt2}{\sqrt2}\\ =\frac{\sqrt6-\sqrt2}{2*2}\\ =\frac{\sqrt6-\sqrt2}{4}\\ \)

Melody  Feb 14, 2017
 #3
avatar+1808 
+20
Best Answer

I doubt you will read this, but I'm actually from New Zealand and I'm in Auckland.

EighthMersennePrime  Feb 15, 2017
 #2
avatar+18348 
+15

Random math IV

 

1.

\(\begin{array}{|rcll|} \hline \cos(\frac{19}{12}\pi) &=& \cos(285^{\circ}) \\ &=& \cos(285^{\circ}-360^{\circ}) \\ &=& \cos(-75^{\circ}) \\ &=& \cos(15^{\circ}-90^{\circ}) \\ &=& \cos(-(90^{\circ}-15^{\circ})) \\ &=& \cos( 90^{\circ}-15^{\circ} ) \\ &=& \mathbf{\sin( 15^{\circ} )} \\\\ \mathbf{\cos(\frac{19}{12}\pi) } &\mathbf{=}& \mathbf{\sin( 15^{\circ} )}\\ \hline \end{array} \)

 

2.

\(\begin{array}{|lrcll|} \hline (1) & \cos(45^{\circ}-15^{\circ})= \cos(30^{\circ}) &=& \cos(45^{\circ})\cdot\cos(15^{\circ})+\sin(45^{\circ})\cdot \sin(15^{\circ})\\ (2) & \cos(45^{\circ}+15^{\circ})= \cos(60^{\circ}) &=& \cos(45^{\circ})\cdot\cos(15^{\circ})-\sin(45^{\circ})\cdot \sin(15^{\circ})\\ \\ \hline (1)-(2): & \cos(30^{\circ})-\cos(60^{\circ}) &=& 2\cdot\sin(45^{\circ})\cdot \sin(15^{\circ})\\\\ & \cos(30^{\circ}) &=& \frac{\sqrt{3}}{2} \\ & \cos(60^{\circ}) &=& \frac{1}{2} \\ & \sin(45^{\circ}) &=& \frac{\sqrt{2}}{2} \\ \\ & \frac{\sqrt{3}}{2}-\frac{1}{2} &=& 2\cdot \frac{\sqrt{2}}{2}\cdot \sin(15^{\circ})\\ & \frac{\sqrt{3}-1}{2} &=& \sqrt{2}\cdot \sin(15^{\circ})\\ & \frac{\sqrt{3}-1}{2\cdot \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} &=& \sin(15^{\circ})\\ & \frac{\sqrt{2}\sqrt{3}-\sqrt{2}}{4} &=& \sin(15^{\circ})\\ & \frac{\sqrt{6}-\sqrt{2}}{4} &=& \sin(15^{\circ})\\\\ & \mathbf{\cos(\frac{19}{12}\pi) = \sin( 15^{\circ} ) }&\mathbf{=}& \mathbf{\frac{\sqrt{6}-\sqrt{2}}{4}} \\ \hline \end{array} \)

 

laugh

heureka  Feb 14, 2017

20 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details