+0  
 
0
44
1
avatar

The range of the function g(x) = 2/(2 + 4x^2 + 5 + 9x^2) can be written as an interval (a,b]. What is a+b?

 May 12, 2022
 #1
avatar+9457 
0

Simplify the function first.

 

\(g(x) = \dfrac2{2 + 4x^2 + 5 + 9x^2} = \dfrac2{13x^2 + 7}\)

 

Note that 13x^2 + 7 is always positive. So g(x) is always positive.

Also note that the minimum of 13x^2 + 7 is attained at x = 0, with a minimum value of 7.

 

Therefore, \(\displaystyle\max_{x\in\mathbb R} g(x) = \dfrac2{\displaystyle\min_{x\in\mathbb R}(13x^2 + 7)} = \dfrac27\).

 

Also, note that \(\displaystyle\lim_{x\to +\infty} g(x) = \displaystyle\lim_{x\to -\infty} g(x) = 0\).

 

Therefore, the range is \(\left(0, \dfrac27\right]\).

 May 12, 2022

5 Online Users