+0  
 
+1
691
1
avatar+107 

Rationalize the denominator of \(\frac{\sqrt{32}}{\sqrt{16}-\sqrt{2}} \). The answer can be written as \(\frac{A\sqrt{B}+C}{D}\), where A, B, C, and D are integers, D is positive, and B is not divisible by the square of any prime. Find the minimum possible value of \(A+B+C+D\).

 Jul 19, 2020
 #1
avatar
0

\(\frac{\sqrt{32}}{\sqrt{16} - \sqrt{2}} = \frac{2 + 6 \sqrt{2}}{7}\)

 A+ B + C+ D = 2 + 6 + 2 + 7 = 17

 Jul 19, 2020

3 Online Users