Simplify $\frac{\sqrt{2}}{\sqrt{5}} \cdot \frac{\sqrt{3}}{\sqrt{7}} \cdot \frac{\sqrt{4}}{\sqrt{9}}$ and rationalize the denominator of the resulting fraction.
\(\frac{\sqrt{2} \cdot \sqrt{3} \cdot \sqrt{4}}{\sqrt{5} \cdot \sqrt{7} \cdot \sqrt{9}}\)
\(\frac{2 \sqrt{6}}{3 \sqrt{35}} \cdot \frac{\sqrt{35}}{\sqrt{35}} = \frac{2\sqrt{210}}{105}\)
This is all for now, I'm going to bed.