+0  
 
0
185
1
avatar

write and find 2 mixed numbers so the rules apply,

1:one number is larger than the other by 4 2/3
2:The difference of the numbers is equal to the smaller number.
3:The sum of the numbers is natural number.

Guest Nov 12, 2017
edited by Guest  Nov 12, 2017

Best Answer 

 #1
avatar+7155 
+2

Let's call the larger number  L , and the smaller number  S .

 

1.     L  =  S + 4\(\frac23\)

 

2.     L - S  =  S

                                               Substitute  S + 4\(\frac23\)  in for  L .

S + 4\(\frac23\)  -  S  =  S

                                               Cancel the  S  and  -S  on the left side.

\(4\frac23\)  =  S

 

 

L  =  S + 4\(\frac23\)

                                               Substitute  4\(\frac23\)  in for  S .

L  =  4\(\frac23\)  +  4\(\frac23\)

 

L  =  8 +  \(\frac43\)

 

L  =  8 +  \(\frac33\) +  \(\frac13\)

 

L  =  9\(\frac13\)

 

And...let's check that their sum is a natural number.

 

L + S   =   9\(\frac13\)  +  4\(\frac23\)   =   13 \(\frac33\)   =   14   Yep!  smiley

hectictar  Nov 12, 2017
 #1
avatar+7155 
+2
Best Answer

Let's call the larger number  L , and the smaller number  S .

 

1.     L  =  S + 4\(\frac23\)

 

2.     L - S  =  S

                                               Substitute  S + 4\(\frac23\)  in for  L .

S + 4\(\frac23\)  -  S  =  S

                                               Cancel the  S  and  -S  on the left side.

\(4\frac23\)  =  S

 

 

L  =  S + 4\(\frac23\)

                                               Substitute  4\(\frac23\)  in for  S .

L  =  4\(\frac23\)  +  4\(\frac23\)

 

L  =  8 +  \(\frac43\)

 

L  =  8 +  \(\frac33\) +  \(\frac13\)

 

L  =  9\(\frac13\)

 

And...let's check that their sum is a natural number.

 

L + S   =   9\(\frac13\)  +  4\(\frac23\)   =   13 \(\frac33\)   =   14   Yep!  smiley

hectictar  Nov 12, 2017

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.