Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
537
4
avatar+208 

Let θ be an acute angle such that sin5θ=sin5θ
Compute tan2θ

 

this isn't my homework or anything, really curious how to do it

 Jun 6, 2021
 #1
avatar+33654 
+4

Here's a helping hand:

 

 

See if you can take it from here.

 Jun 6, 2021
 #4
avatar+118703 
0

Alan, can you please explain your very first line.

That is where I got lost.        frown sad

Melody  Jun 7, 2021
 #2
avatar+208 
+2

because of DeMoivre's Theorem:

cisnθ=(cisθ)n=(cosθ+isinθ)n=cosnθ+(n1)icosn1θsinθ(n2)cosn2θsin2θ(n3)icosn3θsin3θ+.

cosnθ=cosnθ(n2)cosn2θsin2θ+(n4)cosn4θsin4θ,sinnθ=(n1)cosn1θsinθ(n3)cosn3θsin3θ+(n5)cosn5θsin5θ.

sin5θ=(51)cos4θsinθ(53)cos2θsin3θ+(55)sin5θ=5cos4θsinθ10cos2θsin3θ+sin5θ.

sin5θ=sin5θ 

becomes 

5cos4θsinθ10cos2θsin3θ+sin5θ=sin5θ

5cos4θsinθ10cos2θsin3θ=0

θ is an acute angle, so cos2θ2sin2θ=0

cos2θ=2sin2θ

so, I know that tan2θ=12

tanθ=12

tan2θ=2tanθ1tan2θ=2112=22

 Jun 6, 2021
 #3
avatar+118703 
+1

That is an impressive answer JKP.

Did you do it yourself?

Melody  Jun 7, 2021

0 Online Users