Let θ be an acute angle such that sin5θ=sin5θ
Compute tan2θ
this isn't my homework or anything, really curious how to do it
because of DeMoivre's Theorem:
cisnθ=(cisθ)n=(cosθ+isinθ)n=cosnθ+(n1)icosn−1θsinθ−(n2)cosn−2θsin2θ−(n3)icosn−3θsin3θ+⋯.
cosnθ=cosnθ−(n2)cosn−2θsin2θ+(n4)cosn−4θsin4θ−⋯,sinnθ=(n1)cosn−1θsinθ−(n3)cosn−3θsin3θ+(n5)cosn−5θsin5θ−⋯.
sin5θ=(51)cos4θsinθ−(53)cos2θsin3θ+(55)sin5θ=5cos4θsinθ−10cos2θsin3θ+sin5θ.
sin5θ=sin5θ
becomes
5cos4θsinθ−10cos2θsin3θ+sin5θ=sin5θ
5cos4θsinθ−10cos2θsin3θ=0
θ is an acute angle, so cos2θ−2sin2θ=0
cos2θ=2sin2θ
so, I know that tan2θ=12
tanθ=1√2
tan2θ=2tanθ1−tan2θ=√21−12=2√2