+0

# Really want this one solved

+1
49
4
+174

Let $$\theta$$ be an acute angle such that $$\sin 5 \theta = \sin^5 \theta$$
Compute $$\tan 2 \theta$$

this isn't my homework or anything, really curious how to do it

Jun 6, 2021

#1
+32236
+4

Here's a helping hand:

See if you can take it from here.

Jun 6, 2021
#4
+113569
0

That is where I got lost.

Melody  Jun 7, 2021
#2
+174
+2

because of DeMoivre's Theorem:

\begin{align*} \operatorname{cis} n \theta &= (\operatorname{cis} \theta)^n \\ &= (\cos \theta + i \sin \theta)^n \\ &= \cos^n \theta + \binom{n}{1} i \cos^{n - 1} \theta \sin \theta - \binom{n}{2} \cos^{n - 2} \theta \sin^2 \theta - \binom{n}{3} i \cos^{n - 3} \theta \sin^3 \theta + \dotsb. \end{align*}

\begin{align*} \cos n \theta &= \cos^n \theta - \binom{n}{2} \cos^{n - 2} \theta \sin^2 \theta + \binom{n}{4} \cos^{n - 4} \theta \sin^4 \theta - \dotsb, \\ \sin n \theta &= \binom{n}{1} \cos^{n - 1} \theta \sin \theta - \binom{n}{3} \cos^{n - 3} \theta \sin^3 \theta + \binom{n}{5} \cos^{n - 5} \theta \sin^5 \theta - \dotsb. \end{align*}

\begin{align*} \sin 5 \theta &= \binom{5}{1} \cos^4 \theta \sin \theta - \binom{5}{3} \cos^2 \theta \sin^3 \theta + \binom{5}{5} \sin^5 \theta \\ &= 5 \cos^4 \theta \sin \theta - 10 \cos^2 \theta \sin^3 \theta + \sin^5 \theta. \end{align*}

$$\sin 5 \theta = \sin^5 \theta$$

becomes

$$5 \cos^4 \theta \sin \theta - 10 \cos^2 \theta \sin^3 \theta + \sin^5 \theta = \sin^5 \theta$$

$$5 \cos^4 \theta \sin \theta - 10 \cos^2 \theta \sin^3 \theta = 0$$

$$\theta$$ is an acute angle, so $$\cos^2 \theta - 2 \sin^2 \theta = 0$$

$$\cos^2 \theta = 2 \sin^2 \theta$$

so, I know that $$\tan^2 \theta = \frac{1}{2}$$

$$\tan \theta = \frac{1}{\sqrt{2}}$$

$$\tan 2 \theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} = \frac{\sqrt{2}}{1 - \frac{1}{2}} = {2 \sqrt{2}}$$

Jun 6, 2021
#3
+113569
+1

That is an impressive answer JKP.

Did you do it yourself?

Melody  Jun 7, 2021