+0  
 
-1
1364
2
avatar+870 

Let f be the reciprocal function:

\(\forall x \in \mathbb{R}^*, \\f(x)=\frac{1}{x}\)

 

I\ Calculate:

 

\(1) f(1) \\2) f(-\frac{1}{2}) \\3) f(10^{-6}) \\4) f(\sqrt{2}) \\5)f(\frac{\sqrt{5}}{5}) \)

Note: If you end up with roots or fractions, keep the fraction/radical, don't give the decimal form.

 

II\ Demonstrate that, for any strictly positive real number x, that \(\frac{1}{\sqrt{x}}=\frac{\sqrt{x}}{x}\)

 Dec 5, 2015
 #1
avatar
0

1.    1/1 = 1

2.   1/(-1/2) = 1 x (-2/1) = -2

3.   1/(10^-6) = 1 x 10^6 = 1,000,000

4.   1/(sqrt2) =  Sqrt(2)/2

5.    1/((sqrt5)/5)  =  1 x  5/(sqrt5) = 5/sqrt5  =  sqrt5

 

ii   1/sqrtx      =     1/sqrtx   x   sqrtx/sqrtx  =  sqrtx/x

 Dec 5, 2015
 #2
avatar+870 
0

Well done Guest, your answers are exact!

You deserved a 20/20 and a brownie:

 Dec 5, 2015

1 Online Users