We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
cookie policy and privacy policy.

Assume that x and y are both differentiable functions of t and find the required vaules of dy/dt and dx/dt

**Equation:**

y= √x

**Find:**

**a. **dy/dt when x=4

**b.** dx/dt when x=25

**Given:**

**a. **dx/dt=3

**b. **dy/dt=2

**Thanks.**

Paper Apr 21, 2019

#1**+2 **

\(y=\sqrt x\\ y=x^{0.5}\\ \frac{dy}{dt}=0.5x^{-0.5}\cdot \frac{dx}{dt}\\ \frac{dy}{dt}=\frac{1}{2\sqrt x}\cdot \frac{dx}{dt}\\ When\;\;x=4\\ \frac{dy}{dt}=\frac{1}{4}\cdot \frac{dx}{dt}\\\)

I could have done that more simply . Oh well, too bad.

a)

\(Since\;\; \frac{dx}{dt}=3\;\;then\\ \frac{dy}{dt}=\frac{3}{4}\\~\\ \text {that is when x=4} \)

You can do the other one. :)

Melody Apr 21, 2019