+0  
 
+1
1271
4
avatar+817 

In how many ways can we choose 3 distinct letters of the alphabet, without regard to order, if we must choose 1 vowel (A, E, I, O, or U) and 2 consonants?

 Feb 18, 2018
 #1
avatar+37155 
0

Here we go....my stab at it....

5 ways to choose a vowel    a e i o u

   times    21c2

 

5 x 21c2 = 5 x 210 = 1050 ways

 Feb 18, 2018
 #2
avatar+4622 
+2

Hello, EP!

We have 5 options for the choice of the vowel, and we must make 2 choices out of the remaining 21 letters, for a total of \(\binom{21}{2} = 210\)choices for the consonants. This gives a total of \(5 \times 210 = \boxed{1050}\).

 Feb 18, 2018
 #3
avatar+37155 
0

Thanx for the confirmation !  

ElectricPavlov  Feb 18, 2018
 #4
avatar+4622 
0

No problem, EP!

tertre  Feb 18, 2018

2 Online Users

avatar