We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+12
680
3
avatar

how high is rhombus if diagonals are 36 cm and 12cm

 Jan 24, 2016

Best Answer 

 #1
avatar+23301 
+10

how high is rhombus if diagonals are 36 cm and 12cm

 

e = one diagonal

f = the other diagonal

\(e = 12\ cm\) and \(f = 36\ cm\)

 

The four sides all have the same length \( a\)

\(h\) ist the height of the rhombus

 

cos-rule

\(\begin{array}{rcll} e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 - 2a^2\cdot \cos{(B)} \\\\ 2A+2B &=& 360^\circ \\ A+B &=& 180^\circ \\ B &=& 180^\circ - A \\ \cos{(B)} &=& \cos{(180^\circ - A)} = -\cos{(A)} \\\\ e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 + 2a^2\cdot \cos{(A)} \\\\ \cos{(A)} = \frac{2a^2-e^2}{2a^2} &=& \frac{f^2-2a^2}{2a^2}\\ 2a^2-e^2 &=& f^2-2a^2 \\ 4a^2 &=& e^2 + f^2\\ 2a &=& \sqrt{ e^2 + f^2 } \\ \mathbf{a} &\mathbf{=}& \mathbf{\frac{ \sqrt{ e^2 + f^2 } } {2} }\\ \end{array}\)

 

\(\begin{array}{rcll} \cos{(A)} &=& \frac{2a^2-e^2}{2a^2} \\ \cos^2{(A)} &=& \frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& 1-\frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - (2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - 4a^2 + 4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot (4a^2-e^2) }{4a^4} \qquad | \qquad 4a^2 = e^2 + f^2\\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot ( e^2 + f^2-e^2) }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \qquad | \qquad \sin^2{(A)}=1-\cos^2{(A)}\\ \sin^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \\ \mathbf{\sin{(A)}} &\mathbf{=}&\mathbf{\frac{ e\cdot f }{2a^2} } \\ \end{array}\)

 

\(\begin{array}{rcll} h &=& a\cdot \sin{(A)} \\ h &=& a\cdot \frac{ e\cdot f }{2a^2} \\ h &=&\frac{ e\cdot f }{2a} \qquad & | \qquad 2a = \sqrt{ e^2 + f^2 }\\ \end{array} \\ \boxed{~ \begin{array}{rcll} h &=&\frac{ e\cdot f }{\sqrt{ e^2 + f^2 }} \\ \end{array} ~}\\\)

 

\(\begin{array}{rcll} h &=&\frac{ 12\cdot 36 }{\sqrt{ 12^2 + 36^2 }} \\ h &=&\frac{ 432 }{\sqrt{ 1440 }} \\ h &=&\frac{ 432 }{37.9473319220} \\\\ \mathbf{h} &\mathbf{=}& \mathbf{11.3841995766\ cm }\\ \end{array}\)

 

laugh

 Jan 25, 2016
edited by heureka  Jan 25, 2016
edited by heureka  Jan 25, 2016
 #1
avatar+23301 
+10
Best Answer

how high is rhombus if diagonals are 36 cm and 12cm

 

e = one diagonal

f = the other diagonal

\(e = 12\ cm\) and \(f = 36\ cm\)

 

The four sides all have the same length \( a\)

\(h\) ist the height of the rhombus

 

cos-rule

\(\begin{array}{rcll} e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 - 2a^2\cdot \cos{(B)} \\\\ 2A+2B &=& 360^\circ \\ A+B &=& 180^\circ \\ B &=& 180^\circ - A \\ \cos{(B)} &=& \cos{(180^\circ - A)} = -\cos{(A)} \\\\ e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 + 2a^2\cdot \cos{(A)} \\\\ \cos{(A)} = \frac{2a^2-e^2}{2a^2} &=& \frac{f^2-2a^2}{2a^2}\\ 2a^2-e^2 &=& f^2-2a^2 \\ 4a^2 &=& e^2 + f^2\\ 2a &=& \sqrt{ e^2 + f^2 } \\ \mathbf{a} &\mathbf{=}& \mathbf{\frac{ \sqrt{ e^2 + f^2 } } {2} }\\ \end{array}\)

 

\(\begin{array}{rcll} \cos{(A)} &=& \frac{2a^2-e^2}{2a^2} \\ \cos^2{(A)} &=& \frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& 1-\frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - (2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - 4a^2 + 4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot (4a^2-e^2) }{4a^4} \qquad | \qquad 4a^2 = e^2 + f^2\\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot ( e^2 + f^2-e^2) }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \qquad | \qquad \sin^2{(A)}=1-\cos^2{(A)}\\ \sin^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \\ \mathbf{\sin{(A)}} &\mathbf{=}&\mathbf{\frac{ e\cdot f }{2a^2} } \\ \end{array}\)

 

\(\begin{array}{rcll} h &=& a\cdot \sin{(A)} \\ h &=& a\cdot \frac{ e\cdot f }{2a^2} \\ h &=&\frac{ e\cdot f }{2a} \qquad & | \qquad 2a = \sqrt{ e^2 + f^2 }\\ \end{array} \\ \boxed{~ \begin{array}{rcll} h &=&\frac{ e\cdot f }{\sqrt{ e^2 + f^2 }} \\ \end{array} ~}\\\)

 

\(\begin{array}{rcll} h &=&\frac{ 12\cdot 36 }{\sqrt{ 12^2 + 36^2 }} \\ h &=&\frac{ 432 }{\sqrt{ 1440 }} \\ h &=&\frac{ 432 }{37.9473319220} \\\\ \mathbf{h} &\mathbf{=}& \mathbf{11.3841995766\ cm }\\ \end{array}\)

 

laugh

heureka Jan 25, 2016
edited by heureka  Jan 25, 2016
edited by heureka  Jan 25, 2016
 #2
avatar+104793 
+5

Here's another method :

 

Length of a side  = sqrt(6^2 + 18^2)  = sqrt (36 + 324)  = sqrt (360) 

 

And using the Law of Cosines, we can find the smaller interior angle of the rhombus

 

12^2  = 360 + 360 - 2(360)cos(theta)

 

[144 - 360 - 360]  / [ -2(360)]  = cos (theta)

 

cos-1  [ [144 - 360 - 360]  / [ -2(360] ]  = theta  = 36.869897645844°

 

Using the Law of Sines.....we can find the height - h - as follows :

 

sqrt(360)   = h / sin(36.869897645844°)

 

h = sqrt(360)* sin (36.869897645844°)  =  11.3841995766061656  cm

 

Here's a pic :  [DE  is the height]

 

 

 

 

cool cool cool

 Jan 26, 2016
 #3
avatar+23301 
+10

e = one diagonal

f = the other diagonal

h ist the height of the rhombus

 

\(\boxed{~ \begin{array}{rcll} h &=&\frac{ e\cdot f }{\sqrt{ e^2 + f^2 }} \\ \end{array} ~}\\\)

 

or

 

\(\begin{array}{rcll} h &=&\frac{ e\cdot f }{\sqrt{ e^2 + f^2 }}\\ h &=&\frac{ 1 }{ \frac { \sqrt{ e^2 + f^2 }}{ e\cdot f}} \\ h &=&\frac{ 1 }{ \sqrt{ \frac{e^2}{e^2\cdot f^2} + \frac{f^2}{e^2\cdot f^2} }} \\ h &=&\frac{ 1 }{ \sqrt{ \frac{1}{f^2} + \frac{1}{e^2} }} \\ \frac{1}{h} &=&\sqrt{ \frac{1}{f^2} + \frac{1}{e^2} } \\ \frac{1}{h^2} &=&\frac{1}{f^2} + \frac{1}{e^2} \\ \frac{1}{h^2} &=&\frac{1}{e^2} + \frac{1}{f^2} \\ \end{array}\)

 

\(\boxed{~ \begin{array}{rcll} \frac{1}{h^2} &=&\frac{1}{e^2} + \frac{1}{f^2} \end{array} ~}\)

 

laugh

.
 Jan 26, 2016
edited by heureka  Jan 26, 2016

11 Online Users