+0  
 
+5
77
4
avatar+285 

Hello web2.0calc people! I was recommended here by a friend and looking at it, its pretty cool 😎!

My first question,

\(ABCD\) is a regular tetrahedron (right triangular pyramid). If \(M\) is the midpoint of \(\overline{CD}\),  what is \(\tan\angle AMB\)?

TheMathCoder  Apr 19, 2018

Best Answer 

 #1
avatar+7046 
+6

 

I have a feeling that thare is an easier or better way to do this but I couldn't think of it...

 

Each face of the tetrahedron is an equilateral triangle.

 

AM  and  BM  are both heights of these equilateral triangles.

 

If we let the side of each equilateral triangle be  x  , then...

 

AB  =  x        and        AM  =  \(\frac{\sqrt3x}{2}\)       and       BM  =  \(\frac{\sqrt3x}{2}\)

 

And by the law of cosines....

 

\(\cos (\angle AMB)\,=\,\dfrac{-AB^2+AM^2+BM^2}{2(AM)(BM)}\\~\\ \cos (\angle AMB)\,=\,\dfrac{-x^2+(\frac{\sqrt3x}2)^2+(\frac{\sqrt3x}2)^2}{2(\frac{\sqrt3x}2)(\frac{\sqrt3x}2)}\\~\\ \cos (\angle AMB)\,=\,\dfrac{-x^2+\frac{3x^2}4+\frac{3x^2}4}{2(\frac{3x^2}4)}\\~\\ \cos (\angle AMB)\,=\,\dfrac{-1+\frac{3}4+\frac{3}4}{2(\frac{3}4)}\\~\\ \cos (\angle AMB)\,=\,\dfrac{-\frac44+\frac{3}4+\frac{3}4}{\frac{6}4}\\~\\ \cos (\angle AMB)\,=\,\frac{-4+3+3}{6}\\~\\ \cos (\angle AMB)\,=\,\frac13\)

 

 

By the Pythagorean identity...

 

\(\cos^2(\angle AMB)+\sin^2(\angle AMB)\,=\,1\\~\\ \frac{\cos^2(\angle AMB)}{\cos^2(\angle AMB)}+\frac{\sin^2(\angle AMB)}{\cos^2(\angle AMB)}\,=\,\frac{1}{\cos^2(\angle AMB)}\\~\\ 1+\tan^2(\angle AMB)\,=\,\frac1{\cos^2(\angle AMB)}\\~\\ 1+\tan^2(\angle AMB)\,=\,\frac1{(\frac13)^2}\\~\\ 1+\tan^2(\angle AMB)\,=\,\frac1{\frac19}\\~\\ 1+\tan^2(\angle AMB)\,=\,9\\~\\ \tan^2(\angle AMB)\,=\,8\\~\\ \tan(\angle AMB)\,=\,\sqrt8\\~\\ \tan(\angle AMB)\,=\,2\sqrt2\)

hectictar  Apr 20, 2018
Sort: 

4+0 Answers

 #1
avatar+7046 
+6
Best Answer

 

I have a feeling that thare is an easier or better way to do this but I couldn't think of it...

 

Each face of the tetrahedron is an equilateral triangle.

 

AM  and  BM  are both heights of these equilateral triangles.

 

If we let the side of each equilateral triangle be  x  , then...

 

AB  =  x        and        AM  =  \(\frac{\sqrt3x}{2}\)       and       BM  =  \(\frac{\sqrt3x}{2}\)

 

And by the law of cosines....

 

\(\cos (\angle AMB)\,=\,\dfrac{-AB^2+AM^2+BM^2}{2(AM)(BM)}\\~\\ \cos (\angle AMB)\,=\,\dfrac{-x^2+(\frac{\sqrt3x}2)^2+(\frac{\sqrt3x}2)^2}{2(\frac{\sqrt3x}2)(\frac{\sqrt3x}2)}\\~\\ \cos (\angle AMB)\,=\,\dfrac{-x^2+\frac{3x^2}4+\frac{3x^2}4}{2(\frac{3x^2}4)}\\~\\ \cos (\angle AMB)\,=\,\dfrac{-1+\frac{3}4+\frac{3}4}{2(\frac{3}4)}\\~\\ \cos (\angle AMB)\,=\,\dfrac{-\frac44+\frac{3}4+\frac{3}4}{\frac{6}4}\\~\\ \cos (\angle AMB)\,=\,\frac{-4+3+3}{6}\\~\\ \cos (\angle AMB)\,=\,\frac13\)

 

 

By the Pythagorean identity...

 

\(\cos^2(\angle AMB)+\sin^2(\angle AMB)\,=\,1\\~\\ \frac{\cos^2(\angle AMB)}{\cos^2(\angle AMB)}+\frac{\sin^2(\angle AMB)}{\cos^2(\angle AMB)}\,=\,\frac{1}{\cos^2(\angle AMB)}\\~\\ 1+\tan^2(\angle AMB)\,=\,\frac1{\cos^2(\angle AMB)}\\~\\ 1+\tan^2(\angle AMB)\,=\,\frac1{(\frac13)^2}\\~\\ 1+\tan^2(\angle AMB)\,=\,\frac1{\frac19}\\~\\ 1+\tan^2(\angle AMB)\,=\,9\\~\\ \tan^2(\angle AMB)\,=\,8\\~\\ \tan(\angle AMB)\,=\,\sqrt8\\~\\ \tan(\angle AMB)\,=\,2\sqrt2\)

hectictar  Apr 20, 2018
 #2
avatar+619 
+2

Nice first question, and welcome to the forum!

GYanggg  Apr 20, 2018
 #3
avatar+285 
+6

Wow! Thanks hectictar! You are awesome at this!

TheMathCoder  Apr 20, 2018
 #4
avatar
+2

Hectictar:

Let the side length of each equilateral triangle = 1

Slant height of a regular tetrahedron =1 x [sqrt(3) /2]

Altitude(height) of regular tetrahedron =[1 x sqrt(6)] / 3 [From A to meet MB at N]

Draw atraight line From M to meet the height at N [Now you have a right triangle AMN] 

This straight line MN =[sqrt(3) /2]^2 - [sqrt(6)/3]^2 =1/12 [By Pythagoras]

This straight line MN =sqrt(1/12)

Tan(AMN) =AMB =[sqrt(6) / 3] / [sqrt(1/12)] =sqrt(72)/3 =6sqrt(2)/3 =2sqrt(2).

Guest Apr 20, 2018
edited by Guest  Apr 20, 2018
edited by Guest  Apr 20, 2018

20 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy