We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
96
4
avatar+838 

ONLY 1C PLEASE

for a i got: a+b= -3.5 

                ab= 4

b:17/4

please show me how to do 1c thanks

 Feb 28, 2019
 #1
avatar+100546 
+3

(c)  If  1/a^2 and 1/b^2   are roots...we must have that

 

(x - 1/a^2 ) ( x - 1/b^2)  = 0

 

x^2   - [ 1/ a^2 + 1/b^2] x  +   1 /(ab)^2   = 0

 

x^2 - [  1/a^2 +1/ b^2] / (ab^2) + 1/4^2  =  0

 

x^2 -  [  ( a^2 + b^2) / (ab)^2 ] x  + 1/16  = 0

 

x^2  - [ (17/4) / 16 ] x  + 1/16 = 0

 

x^2 - (17/64)x + 1/16 = 0       multiply through by 64

 

64x^2 - 17x + 4 =  0

 

So....the quadratic is

 

64x^2 - 17x + 4

 

cool cool cool

 Feb 28, 2019
 #2
avatar+838 
0

thank you!

YEEEEEET  Feb 28, 2019
 #3
avatar+4221 
+2

Part (a) is just Vieta's.

 

The sum of the roots is -b/a, or in the quadratic equation, it is -7/2.

 

On the other hand, the product of the roots is c/a, so the answer is 8/2=4.

 

Hope that helped,

tertre smiley

 Feb 28, 2019
 #4
avatar+4221 
+2

Part (b) is using \((x+b)^2.\)

 

Remember that \((x+b)^2=x^2+b^2+2xb.\)

 

Therefore, plugging in the values, we get \((-\frac{7}{2})^2=x^2+b^2+2(4).\)

 

Simplifying, \(\frac{49}{4}-8=x^2+b^2\), and that is equal to \(\frac{49}{4}-\frac{32}{4}=\boxed{\frac{17}{4}}.\)

 

Hope that helped,

tertre smiley

 Feb 28, 2019
edited by tertre  Feb 28, 2019

8 Online Users

avatar