Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1724
6
avatar

rotate the aces to eliminate the xy term for 2x^2-72xy+23y^2-80x-60y-125+0

help please

 Apr 23, 2015

Best Answer 

 #2
avatar+130477 
+10

I think this is supposed to be :

2x^2-72xy+23y^2-80x-60y-125=0

 

We need to first calculate this:

cot2Θ = [A - C]  / B   = [2 - 23]/[-72]  = [-21]/[-72]  = [7/24]

 

And, from trig, we have that cos2Θ  = 7/25

And using trig again, we can caclulate  sinΘ  and cosΘ, thusly

 sinΘ  = √[(1 - cos2Θ)/2 ] = √[(1 - 7/25)/2] = √[9/25] = 3/5

cosΘ =  √[(1 + cos2Θ)/2 ] = √[(1 + 7/25)/2] = √[16/25] = 4/5

 

Now....we need to make the following substitutions

x = cosΘ X  -  sinΘ Y      and y =  sinΘ X + cosΘ Y    ....  or, just .......

x = (4/5)X - (3/5)Y       and  y = (3/5)X + (4/5)Y

 

So we have

2[(4/5)X - (3/5)Y]^2-72[ (4/5)X - (3/5)Y][(3/5)X + (4/5)Y]+23[(3/5)X + (4/5)Y]^2-80[ (4/5)X - (3/5)Y]-60[ (3/5)X + (4/5)Y -125=0-80[ (4/5)X - (3/5)Y]  

 

And term by term, we have.......

[(32/25)X^2  - (48/25)XY + (18/25)Y^2] +

[(-864/25)X^2 - (504/25)XY + (864/25)Y^2] +

[(207/25)X^2 +(552/25)XY + (368/25)Y^2]  +

[48Y  - 64X]  +

[-36X  - 48Y ] -

125    =  0

 

Simplifying the above, we get

50Y^2  - 25X^2 -100X  - 125 = 0     divide through by 25

2Y^2 - x^2 - 4x - 5 = 0   complete the square on x  

2Y^2 - [x^2 + 4x + 4  - 4] = 5

2Y^2 - (x +2)^2 = 1

 

And we have the recognizable equation of a hyperbola.

 

Here's a picture of both the original  graph with the xy term and the "normal" graph without rotation...

https://www.desmos.com/calculator/rrkgvzswml

 

BTW...the original graph's rotation can be found thusly:

cot2Θ = [A - C]  / B   = [2 - 23]/[-72]  = [-21]/[-72]  = [7/24] 

cot-1(7/24) =73.739795291688°

So half of this is the angle of rotation ≈ 36.87° 

 

  

 Apr 24, 2015
 #1
avatar
+5

 Could you repeat that in English? Thank You!

 Apr 23, 2015
 #2
avatar+130477 
+10
Best Answer

I think this is supposed to be :

2x^2-72xy+23y^2-80x-60y-125=0

 

We need to first calculate this:

cot2Θ = [A - C]  / B   = [2 - 23]/[-72]  = [-21]/[-72]  = [7/24]

 

And, from trig, we have that cos2Θ  = 7/25

And using trig again, we can caclulate  sinΘ  and cosΘ, thusly

 sinΘ  = √[(1 - cos2Θ)/2 ] = √[(1 - 7/25)/2] = √[9/25] = 3/5

cosΘ =  √[(1 + cos2Θ)/2 ] = √[(1 + 7/25)/2] = √[16/25] = 4/5

 

Now....we need to make the following substitutions

x = cosΘ X  -  sinΘ Y      and y =  sinΘ X + cosΘ Y    ....  or, just .......

x = (4/5)X - (3/5)Y       and  y = (3/5)X + (4/5)Y

 

So we have

2[(4/5)X - (3/5)Y]^2-72[ (4/5)X - (3/5)Y][(3/5)X + (4/5)Y]+23[(3/5)X + (4/5)Y]^2-80[ (4/5)X - (3/5)Y]-60[ (3/5)X + (4/5)Y -125=0-80[ (4/5)X - (3/5)Y]  

 

And term by term, we have.......

[(32/25)X^2  - (48/25)XY + (18/25)Y^2] +

[(-864/25)X^2 - (504/25)XY + (864/25)Y^2] +

[(207/25)X^2 +(552/25)XY + (368/25)Y^2]  +

[48Y  - 64X]  +

[-36X  - 48Y ] -

125    =  0

 

Simplifying the above, we get

50Y^2  - 25X^2 -100X  - 125 = 0     divide through by 25

2Y^2 - x^2 - 4x - 5 = 0   complete the square on x  

2Y^2 - [x^2 + 4x + 4  - 4] = 5

2Y^2 - (x +2)^2 = 1

 

And we have the recognizable equation of a hyperbola.

 

Here's a picture of both the original  graph with the xy term and the "normal" graph without rotation...

https://www.desmos.com/calculator/rrkgvzswml

 

BTW...the original graph's rotation can be found thusly:

cot2Θ = [A - C]  / B   = [2 - 23]/[-72]  = [-21]/[-72]  = [7/24] 

cot-1(7/24) =73.739795291688°

So half of this is the angle of rotation ≈ 36.87° 

 

  

CPhill Apr 24, 2015
 #3
avatar+118703 
0

Very impressive Chris    

 Apr 24, 2015
 #4
avatar+118703 
+5

Oh, rotate the Axes  at least the question makes some degree of sense.

I will have to study your answer Chris ://

I would have had NO idea how do do this one!

 Apr 24, 2015
 #5
avatar+130477 
+5

Melody....I only vaguely remembered this from Calculus.....I had to do some "reviewing," too.  I don't know if this is taught much now in many places. The algebra gets pretty "sticky".......

 

  

 Apr 24, 2015
 #6
avatar+26397 
+5

Rotate the axis to eliminate the xy term for 2x^2-72xy+23y^2-80x-60y-125=0

2x2+23y272xy80x60y=125ax2+by2+2cxy+2dx+2ey=125

a=2b=23c=36d=40e=30

\boxed{ \small{\text{$ \tan{(\varphi)}=\dfrac{ \sqrt{ (a-b)^2+4\cdot c^2 }-(a-b) } {2\cdot c} $}} }\\\\ \small{\text{$ \tan{(\varphi)}=\dfrac{ \sqrt{ (2-23)^2+4\cdot (-36)^2 }-(2-23) } {2\cdot (-36) } = \dfrac{ \sqrt{ (-21)^2+4\cdot (-36)^2 }+21 } { -72 } $}}\\\\ \small{\text{$ \tan{(\varphi)} = \dfrac{ \sqrt{ 441+4\cdot 1296 }+21 } { -72 } $}}\\\\ \small{\text{$ \tan{(\varphi)} = \dfrac{ 96 } { -72 } $}}\\\\ \small{\text{$ \tan{(\varphi)} = - \dfrac{ 4 } { 3 } $}}\\

\boxed{ \small{\text{ $ \sin{ (\varphi) } =\dfrac { \tan{(\varphi)} }  { \sqrt{1+\tan{(\varphi)}^2 } } \qquad \cos{ (\varphi) } =\dfrac { 1 }  { \sqrt{1+\tan{(\varphi)}^2 } } $}} }\\\\ \small{\text{ $ \sin{ (\varphi) } =\dfrac { -\frac{4}{3} }  { \sqrt{1+ (-\frac{4}{3} )^2 } } \qquad \cos{ (\varphi) } =\dfrac { 1 }  { \sqrt{1+ (-\frac{4}{3} )^2 } } $}}\\\ \small{\text{ $ \sin{ (\varphi) } =-\dfrac { 4 } { 5 } \qquad \cos{ (\varphi) }=\dfrac { 3 } { 5 } $}}

Rotation: \boxed{ \small{\text{ $ \begin{array}{rcl} x &=& x'\cdot \cos{(\varphi)}-y'\cdot \sin{(\varphi)} \\ y &=& x'\cdot \sin{(\varphi)}+y'\cdot \cos{(\varphi)} \end{array} $}}}

 x=x35+y45y=x45+y35

We substitute:

 x2=(x35+y45)2=925x2+21225xy+1625y2 y2=(x45+y35)2=1625x221225xy+925y2 xy=(x35+y45)(x45+y35)=1225x2+1225y2725xy

2(925x2+21225xy+1625y2)+23(1625x221225xy+925y2)72(1225x2+1225y2725xy)80(x35+y45)60(x45y35)=125

1825x2+3225y2+36825x2+20725y2+86425x286425y22405x3205y+2405x+1805y=12550x225y2+0x28y=12550x225y228y=125

 

 Apr 25, 2015

2 Online Users