+0  
 
0
917
3
avatar+2353 

Morning!

 

Consider matrix $$A = \begin{pmatrix}
1 & 1 & 1 & 1 & 1\\
0 & 1 & 3 & 2 & 0\\
1 & 1 & 0 & 5 & 1\\
0 & 0 & 1 & -4 & 2\\
\end{pmatrix}$$

 

I want to find the row echolon form of A.

According to the solutions this is the first step toward that form.

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1\\
0 & 1 & 3 & 2 & 0\\
1 & 1 & 0 & 5 & 1\\
0 & 0 & 1 & -4 & 2\\
\end{pmatrix} \sim \begin{pmatrix}
1 & 1 & 1 & 1 & 1\\
0 & 1 & 3 & 2 & 0\\
0 & 0 & 1 & -4 & 2\\
0 & 0 & -1 & 4 & 0\\
\end{pmatrix}$$

It appear like $$R_3-R_1 \mbox{ has been applied, but } R_3-R_1 \mbox{ is } \begin{pmatrix}
1&1&0&5&1
\end{pmatrix}-\begin{pmatrix}
1&1&1&1&1
\end{pmatrix} = \begin{pmatrix}
0&0&-1&4&0
\end{pmatrix}.$$

What have I been missing here?

 Jun 9, 2014

Best Answer 

 #3
avatar+26393 
+6

Matrix A:
( 1,  1,  1,  1,  1,

  0,  1,  3,  2,  0, 

  1,  1,  0,  5,  1,

  0,  0,  1, -4,  2)

Matix A: toReducedRowEchelonForm
( 1,  0,  0,  -9,  0,

  0,  1,  0, 14,  0,

  0,  0,  1,  -4,  0,

  0,  0,  0,   0,  1)

 Jun 10, 2014
 #1
avatar+33661 
+5

It's R3-R1 followed by a row switch R3 <-> R4

The word "first" obviously allows two operations!

 Jun 9, 2014
 #2
avatar+2353 
0

Wow, that's like, the simplest answer I've ever seen.

How could I not see that 

 

thanks Alan

 Jun 9, 2014
 #3
avatar+26393 
+6
Best Answer

Matrix A:
( 1,  1,  1,  1,  1,

  0,  1,  3,  2,  0, 

  1,  1,  0,  5,  1,

  0,  0,  1, -4,  2)

Matix A: toReducedRowEchelonForm
( 1,  0,  0,  -9,  0,

  0,  1,  0, 14,  0,

  0,  0,  1,  -4,  0,

  0,  0,  0,   0,  1)

heureka Jun 10, 2014

2 Online Users

avatar