A scientist has two solutions, which she has labeled Solution A and Solution B. Each contains salt. She knows that Solution A is 55% salt and Solution B is 80% salt . She wants to obtain 110 ounces of a mixture that is 60% salt. How many ounces of each solution should she use?
Let x be the number of ounces of Solution A and y be the number of ounces of Solution B. We know that x + y = 110 ounces. The total amount of salt in the resulting solution must be 60% of the final solution, so 0.55x + 0.8y = 0.6(x+y) = 0.6 * 110 = 66 ounces. Solving the system of equations x + y = 110 and 0.55x + 0.8y = 66, we get x = 40 and y = 70. Therefore, the scientist should use 40 ounces of Solution A and 70 ounces of Solution B.