+0  
 
+1
51
6
avatar+49 

Evaluate the sum \(\dfrac{6}{3^2-1}+\dfrac{6}{5^2-1}+\dfrac{6}{7^2-1}+\dfrac{6}{9^2-1}+\cdots\)

 Feb 20, 2019

Best Answer 

 #2
avatar+21827 
+4

Evaluate the sum

\(\large{\dfrac{6}{3^2-1}+\dfrac{6}{5^2-1}+\dfrac{6}{7^2-1}+\dfrac{6}{9^2-1}+\cdots}\)

 

\(\begin{array}{|rcll|} \hline && \dfrac{6}{3^2-1}+\dfrac{6}{5^2-1}+\dfrac{6}{7^2-1}+\dfrac{6}{9^2-1}+\cdots \\\\ &=& \dfrac{6}{(3-1)(3+1)}+\dfrac{6}{(5-1)(5+1)}+\dfrac{6}{(7-1)(7+1)}+\dfrac{6}{(9-1)(9+1)}+\cdots \\\\ &=& \dfrac{6}{2\cdot 4}+\dfrac{6}{4\cdot 6}+\dfrac{6}{6\cdot 8}+\dfrac{6}{8\cdot 10}+\cdots \\\\ &=& 6\left( \dfrac{1}{2\cdot 4}+\dfrac{1}{4\cdot 6}+\dfrac{1}{6\cdot 8}+\dfrac{1}{8\cdot 10}+\cdots \right) \\\\ &=& 6\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{2k(2k+2)} \\\\ &=& 6\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{4k(k+1)} \\\\ &=& \dfrac{6}{4}\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{k(k+1)} \\\\ &=& \dfrac{3}{2}\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{k(k+1)} \quad | \quad \boxed{\dfrac{1}{k(k+1)} = \dfrac{1}{k} - \dfrac{1}{k+1} } \\\\ &=& \dfrac{3}{2}\cdot \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k} - \dfrac{1}{k+1} \right) \\\\ &=& \dfrac{3}{2}\cdot \left[\sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k} \right) - \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k+1} \right) \right] \\\\ &=& \dfrac{3}{2}\cdot \left[1+\sum \limits_{k=2}^{\infty} \left(\dfrac{1}{k} \right) - \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k+1} \right) \right] \\\\ &=& \dfrac{3}{2}\cdot \left[1+\sum \limits_{k=2}^{\infty} \left(\dfrac{1}{k} \right) - \sum \limits_{k=2}^{\infty} \left(\dfrac{1}{k} \right) \right] \\\\ &=& \dfrac{3}{2}\cdot (1+0) \\\\ &=& \dfrac{3}{2} \\ \hline \end{array}\)

 

laugh

 Feb 21, 2019
edited by heureka  Feb 22, 2019
edited by heureka  Feb 22, 2019
 #1
avatar+4404 
+1

\(\text{A little toying with this and lookup at OEIS show that this sum is equal to}\\ \dfrac 3 4\sum \limits_{k=1}^\infty~\dbinom{k+1}{2}^{-1} = \dfrac 3 2\)

.
 Feb 20, 2019
 #2
avatar+21827 
+4
Best Answer

Evaluate the sum

\(\large{\dfrac{6}{3^2-1}+\dfrac{6}{5^2-1}+\dfrac{6}{7^2-1}+\dfrac{6}{9^2-1}+\cdots}\)

 

\(\begin{array}{|rcll|} \hline && \dfrac{6}{3^2-1}+\dfrac{6}{5^2-1}+\dfrac{6}{7^2-1}+\dfrac{6}{9^2-1}+\cdots \\\\ &=& \dfrac{6}{(3-1)(3+1)}+\dfrac{6}{(5-1)(5+1)}+\dfrac{6}{(7-1)(7+1)}+\dfrac{6}{(9-1)(9+1)}+\cdots \\\\ &=& \dfrac{6}{2\cdot 4}+\dfrac{6}{4\cdot 6}+\dfrac{6}{6\cdot 8}+\dfrac{6}{8\cdot 10}+\cdots \\\\ &=& 6\left( \dfrac{1}{2\cdot 4}+\dfrac{1}{4\cdot 6}+\dfrac{1}{6\cdot 8}+\dfrac{1}{8\cdot 10}+\cdots \right) \\\\ &=& 6\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{2k(2k+2)} \\\\ &=& 6\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{4k(k+1)} \\\\ &=& \dfrac{6}{4}\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{k(k+1)} \\\\ &=& \dfrac{3}{2}\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{k(k+1)} \quad | \quad \boxed{\dfrac{1}{k(k+1)} = \dfrac{1}{k} - \dfrac{1}{k+1} } \\\\ &=& \dfrac{3}{2}\cdot \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k} - \dfrac{1}{k+1} \right) \\\\ &=& \dfrac{3}{2}\cdot \left[\sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k} \right) - \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k+1} \right) \right] \\\\ &=& \dfrac{3}{2}\cdot \left[1+\sum \limits_{k=2}^{\infty} \left(\dfrac{1}{k} \right) - \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k+1} \right) \right] \\\\ &=& \dfrac{3}{2}\cdot \left[1+\sum \limits_{k=2}^{\infty} \left(\dfrac{1}{k} \right) - \sum \limits_{k=2}^{\infty} \left(\dfrac{1}{k} \right) \right] \\\\ &=& \dfrac{3}{2}\cdot (1+0) \\\\ &=& \dfrac{3}{2} \\ \hline \end{array}\)

 

laugh

heureka Feb 21, 2019
edited by heureka  Feb 22, 2019
edited by heureka  Feb 22, 2019
 #3
avatar+98060 
+1

Very nice, Heureka......I wondered if there was a way to determine this "by hand"

 

 

cool cool cool

CPhill  Feb 21, 2019
 #4
avatar+1361 
+2

Hello Heureka,

In your solution, one of the (k) factors seems to have randomly evaporated:   

 

\(\dfrac{3}{2}\cdot \sum \limits_{k=1}^{\infty} \dfrac{1}{\underbrace {k}_{evaporated?}(k+1)} \quad | \quad \boxed{\dfrac{1}{k+1} = \dfrac{1}{k} - \dfrac{1}{k+1} } \\\\ \dfrac{3}{2}\cdot \sum \limits_{k=1}^{\infty} \left(\dfrac{1}{k} - \dfrac{1}{k+1} \right) \\\\\)

 

I thought you would like to fix this fuckuplaugh

 

 

GA

GingerAle  Feb 21, 2019
 #5
avatar+21827 
+3

Sorry GA,

 

I corrected my typo:

\(\boxed{\dfrac{1}{k(k+1)} = \dfrac{1}{k} - \dfrac{1}{k+1} } \)

 

laugh

heureka  Feb 22, 2019
edited by heureka  Feb 22, 2019
 #6
avatar+21827 
+3

Thank you CPhill,

 

laugh

heureka  Feb 22, 2019

26 Online Users

avatar