The sequence $(a_n)$ is defined by $a_1 = \frac{1}{2}$ and
$$ a_n = a_{n - 1}^2 + a_{n - 1} $$
for $n \geq 2$.
Prove that
$$\frac{1}{a_1 + 1} + \frac{1}{a_2 + 1} + \dots + \frac{1}{a_n + 1} < 2$$
for all $n \geq 1$.
How do I get started with this problem? I used their hint that told me to write the relationship as $a_n = a_{n - 1} (a_{n - 1} + 1)$ and to try getting fractions but I'm not sure how to get started on that.
Any help would be appreciated.
By the property of telescoping sum, we have quite easily that \dfrac{1}{a_n} = 2-\sum_{k=0}^{n-1}\dfrac{1}{n+a_k}.
First we show that a_n<1 which is analogous to proving that \sum_{k=0}^{n-1}\dfrac{1}{n+a_k}<1. Now, we note that \{a_k\} is an increasing sequence, hence a_k\geq a_0 for all k\geq0. This gives \sum_{k=0}^{n-1}\dfrac{1}{n+a_k}\leq\dfrac{n}{n+a_0}=\dfrac{2n}{2n+1}<1 and thus we are done.
Now we prove the other part of the inequality. We note that \sum_{k=0}^{n-1}\dfrac{1}{n+a_k}\geq\dfrac{n}{n+a_n} because of increasing property of the sequence a_n. Now using the fact that \dfrac{1}{a_n}=2-\sum_{k=0}^{n-1}\dfrac{1}{n+a_k} we have, after some algebra that 2a_n^2+(n-1)a_n-n\geq0 implying, and keeping in mind that \{a_k\} is a positive sequence, a_n\geq\dfrac{-(n-1)+\sqrt{(n-1)^2+8n}}{4}. It remains to show that this huge quantity is greater than 1-\dfrac{1}{n}. By squaring both sides, and cancelling out terms, we come to 3n>2 which is true for any n. Hence, 1/(a_1 + 1) + 1/(a_2 + 1) + ... + 1/(a_n + 1) < 2.