Let a1, a2, a3, … be an arithmetic sequence. Let Sn denote the sum of the first n terms. If S20=15 and S10=0, then find S70.
Sn=n2(a1+(n−1)d)
So using this and plugging in values we get:
15=202(a1+19d)0=102(a1+9d) solving we get:
a=−9500,d=1500
Therefore:
S70=702(a1+69d)S70=215