+0  
 
0
289
2
avatar

Please expand the following at x = 0:  sqrt(1 + x)^ -1. Thank you for help.

 Jul 20, 2017
 #1
avatar+94550 
+1

 

 (1 + x)^ -1/2  at x = 0

 

Using the Maclaurin Series, we have

 

f(0) + f ' (0)x  + f ''(0) x^2 / 2!  +   f  '''(0) x^3 / 3! + ......  + f(n)(0) x^n / n!

 

f(0)  =  1

 

f ' (x) =  ( -1/2) (1 + x)^( -3/2)   and   f ' (0)  =  (-1.2)  ( 1 + 0)^-(3/2)=   (-1/2)

 

f '' (x)  =  (3/4) (1 + x) ^(-5/2)  and   f '' (0)  = (3/4)  (1 + 0)^(-5/2)  =   (3/4)

 

f ''' (x)  =   (-15 / 8 ) ( 1 + x)^(-7/2)   and  f''' (0)  = (-15/8) (1 + 0)^(-7/2)  = ( - 15 / 8)

 

 

So we have the first four terms

 

1 - (1/2)x + (3/4)x^2/2   - (15/8)x^3 / 6 + ..... +  f(n)(0) x^n / n!  =

 

1 - x/2  + 3x^2/8  - 15x^3/48 + .....+  f(n)(0) x^n / n!  =

 

1 - x/2  + 3x^2/8  - 5x^3/16 + ...... +  f(n)(0) x^n / n!

 

 

 

cool cool cool

 Jul 20, 2017
 #2
avatar
0

sqrt(1 + x)^ -1 =1 - 1/2x + [1.3/2.4]x^2 - [1.3.5/2.4.6]x^3 + [1.3.5.7/2.4.6.8]x^4.........etc.

 Jul 20, 2017

22 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.