Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
41
1
avatar+2729 

Let
a + ar + ar^2 + ar^3 + \dotsb
be an infinite geometric series. The sum of the series is $4.$ The sum of the cubes of all the terms is $10.$ Find the common ratio.

 Mar 21, 2024
 #1
avatar+410 
+1

 

 

 

a+ar+ar2+ar3+=4a3+a3r3+a3r6+a3r9+=10Using the sum of infinite geometric series formula:{a1r=4a31r3=10Isolate a:{a=4(1r)a3=10(1r3)Substitute:64(1r)3=10(1r3)54r3192r2+192r54=0(r1)(9r223r+9)=0r=1,r=23+20518,r=2320518take the range1<1thereforer=2320518

.
 Mar 21, 2024
edited by hairyberry  Mar 21, 2024

0 Online Users