We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
187
1
avatar+295 

sHOW THAT 5^2n -2^3n is divisible by 17

 Sep 29, 2018

Best Answer 

 #1
avatar+4775 
+3

\(\text{let }f(n) = 5^{2n} - 2^{3n} =25^n - 8^n\\ f(1) = 25-8 = 17 \text{ which is clearly divisible by 17}\)

 

\(\text{Now assume that }f(n) \text{ is divisible by 17. We need to show that }f(n+1) \text{ is as well}\\ f(n+1) = 25^{n+1} - 8^{n+1} = 25\cdot 25^n - 8\cdot 8^n = \\ 25\cdot 25^n-25\cdot 8^n + 17\cdot 8^n =\\ 25(25^n - 8^n) + 17\cdot 8^n =\\ 25 \cdot 17m + 17\cdot 8^n, (\text{ f(n) =17m by assumption} ) \\ 17(25m + 8^n) \\ \text{and this is clearly divisible by 17}\)

.
 Sep 29, 2018
 #1
avatar+4775 
+3
Best Answer

\(\text{let }f(n) = 5^{2n} - 2^{3n} =25^n - 8^n\\ f(1) = 25-8 = 17 \text{ which is clearly divisible by 17}\)

 

\(\text{Now assume that }f(n) \text{ is divisible by 17. We need to show that }f(n+1) \text{ is as well}\\ f(n+1) = 25^{n+1} - 8^{n+1} = 25\cdot 25^n - 8\cdot 8^n = \\ 25\cdot 25^n-25\cdot 8^n + 17\cdot 8^n =\\ 25(25^n - 8^n) + 17\cdot 8^n =\\ 25 \cdot 17m + 17\cdot 8^n, (\text{ f(n) =17m by assumption} ) \\ 17(25m + 8^n) \\ \text{and this is clearly divisible by 17}\)

Rom Sep 29, 2018

5 Online Users

avatar